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The measurement of fluorescence from single protein molecules has become an important new tool in the
study of dynamic processes, allowing for the direct visualization of the motions experienced by individual
proteins and macromolecular complexes. The data from such single-molecule experiments are in the form of
photon trajectories, consisting of arrival times and wavelength information on individual photons. The analysis
of photon trajectories can be difficult, particularly if the motions are occurring at rates comparable to the
photon arrival rate or in the presence of noise. In this paper, we introduce the use of hidden Markov models
(HMMs) for the analysis of photon trajectory data that operate using the photon data directly, without the
need for ensemble averaging of the data as implied by correlation function analysis. Using a simple kinetic
model, we examine the relationship between the uncertainty in the estimates of the motional rate and the
photon detection rate. Remarkably, we obtain relative uncertainties in the rate constants of as little as 3%
even when the interconversion rate is equal to the photon detection rate, and the uncertainty increases to only
10% when the interconversion rate is 10 times the photon detection rate. This suggests that useful information
can be obtained for much faster kinetic regimes than have typically been studied. We also examine the impact
of background photons on the determination of the rate and demonstrate that the HMM-based approach is
robust, displaying small uncertainties for background photon arrival rates approaching that of the signal.
These results not only are relevant in establishing the theoretical limits on precision, but are also useful in the
context of experimental design. Finally, to demonstrate how the methodology can be extended to more complex
kinetic models and how it can allow one to make use of the full power of statistics for purposes of model
evaluation and selection, we consider a four-state kinetic model for protein conformational transitions previously
studied by Schenter et al. (J. Phys. Chem. A 1999, 103, 10477). We show how an HMM can be used as an
alternative to higher-order correlation function analysis for the detection of “conformational memory” and
apparent non-Markovian dynamics arising from such temporally inhomogeneous kinetic schemes.

Introduction

Single-molecule measurements are providing insight into
many phenomena that were previously intractable because of
the ensemble averaging present in bulk measurements.1-8 In
particular, the dynamics of conformationally heterogeneous
systems are benefiting from single-molecule studies. Protein
folding and conformational dynamics,9-15 enzymology,16-20
ribozyme function,21 bacterial light harvesting,12,22,23 and protein-
nucleic acid interactions24 are just a few examples of complex
systems that have benefitted from the application of single-
molecule techniques.
One goal of single-molecule measurements has been to extract

the rate of a dynamic process from a single-molecule trajectory.
Single-molecule experiments have been used to obtain kinetic
rate information about a variety of biological processes, includ-
ing protein conformational dynamics and folding, enzymatic
turnovers, RNA and DNA conformational changes, and fluctua-
tions and function of large biological assemblies. The rates that
have been determined have ranged from 1000 to 0.01 Hz.
Indirect evidence of the presence of faster processes is common

from heterogeneity detected in distributions determined from
binned data. However, experimental and data analysis limitations
have prevented their quantification.
Comparisons of rates between single molecules can show

evidence of heterogeneity or conformational memory.12,13,19,25
In the context of a molecular system, conformational memory
or intermittency26 results from transitions between unobservable
states that modulate the dynamics of the observable states and
can result in apparent dynamics of the observable states being
non-Markovian, even if the underlying dynamics involving the
observable and unobservable states is Markovian. Rigler and
co-workers have reported non-Markovian dynamics and molecule-
to-molecule differences in activity in the rate of single enzymatic
turnovers. They characterized the dynamics in terms of a non-
Markovian function that is sensitive to memory in the trajec-
tory.19 Dovichi and co-workers reported that differences in single
alkaline phosphatase catalytic activity result from differing
degrees of glycosylation or protease degradation using the total
intensity of a fluorescence product turned over during a set
incubation time.27 Such conclusions require that rates be
extracted from observations of single molecules and that reliable
uncertainty estimates can be made; otherwise, the heterogeneity
between molecules cannot be determined with confidence.
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The capability of routinely making single-molecule measure-
ments has driven the need for new methods of analyzing single-
molecule data that take full advantage of the new and increased
information they provide.28 Essentially three approaches have
been used to quantify the rates of single-molecule fluctuations:
the fitting of dwell-time histograms, the analysis of the
dependence of the shape of a distribution on binning time, and
the calculation of correlation functions. Of these methods, only
higher-order correlation functions seem to be likely to fully
utilize the information present in single-molecule measure-
ments.18,19,25,29

The most commonly employed of these three methods is the
fitting of dwell-time histograms. When a single-molecule
trajectory has sufficient contrast between states, thresholds can
be applied to distinguish the states of the molecule. These
thresholds are typically chosen manually and can introduce
subjectivity into the analysis. Runs of each state are tallied to
give histograms of the state dwell times, allowing for the
determination of kinetic parameters by exponential fitting.
Typically, this technique is limited to systems showing large
modulations of the fluorescence signal. Binning of the data is
also required, and this limits the temporal resolution of the
measurement to be 1 or 2 orders of magnitude lower than the
photon count rate to overcome the effects of shot noise. To
mitigate the effects of shot noise, some investigators have
applied filters to the data prior to applying a threshold.11 This
can substantially improve the time resolution of the experiment
by mitigating some of the effects of shot noise, but there is still
the difficulty associated with choosing a threshold.
Distribution narrowing has been used to estimate rates in cases

where clear assignment of states is not possible. If the data are
acquired at sufficiently high temporal resolution, they can be
“rebinned” at a lower resolution, effectively averaging over some
of the conformational fluctuations by causing exchange between
different portions of a distribution. The bin-width dependence
of a distribution can allow the time of interchange to be
estimated by analogy with motional narrowing of spectral
features in wavelength-resolved bulk spectroscopic measure-
ments. This rebinning technique has been demonstrated for the
conformational fluctuations in polypeptides and proteins9,12,14
and appears to be useful for making estimates of interchange
times when clear contrast between interchanging states does not
exist and adequate trajectories are not available to determine
correlation functions.
Correlation analysis is also commonly used and can provide

a great deal of information regarding the time scales of
fluctuations in the system. Correlation functions can be formally
defined in terms of integrals over time with infinite limits.
Conceptually, this corresponds to replacing the bulk ensemble
average with a single-molecule time average, but such an
approach can lead to difficulties for time scales that are not at
least an order of magnitude faster than the average total
observation time of a single molecule. A single molecule does
not typically sample enough of its fluctuation spectrum during
a single measurement to allow robust correlation analysis. In
practice, a large number of trajectories must be averaged to
obtain adequate mathematical accuracy,11,19,30,31 particularly for
the higher-order correlation functions that are sensitive to
memory effects and temporal heterogeneity.18,19,25,29 This pre-
vents the examination of differences between single molecules.
Finally, it can be difficult to determine the degree to which a
model successfully describes the data using correlation functions.
One type of single-molecule experiment involves the obser-

vation of fluorescence fluctuations from an individual member

of an equilibrium ensemble. Confocal microscopy coupled with
high-sensitivity detection for time-correlated single-photon
counting can monitor changes in fluorescence polarization,
spectrum, lifetime, and intensity that arise from fluctuations in
the system.32 Single-molecule fluorescence measurements have
some important fundamental limitations that restrict the rate,
amount, and quality of information obtainable from the system.
Because individual single fluorophores can emit only one photon
at a time, they exhibit fluorescence anti-bunching at time scales
very short compared to the fluorescence lifetime, thus limiting
the maximum average observable count rate. Organic dyes are
typically used as labels and always have a finite cross section
for photobleaching. This limits the total number of photons that
can be observed on average from a single molecule. Further-
more, in solution, there will be contributions from spontaneous
Raman scattering of the solvent. Even though Raman scattering
is weak, the high concentration of the solvent relative to a single
molecule makes it a significant source of background in single-
molecule fluorescence measurements. Background photons are
uncorrelated with the state of the system and therefore degrade
the average information content of the photon stream.
Converting the stream of detected photons, or photon arrival

trajectory, into knowledge regarding the unobservable and
dynamically changing state of the molecule is the goal of single-
molecule data analysis and the topic of this paper. In this paper,
we present a novel application of a statistical analysis method
for extracting information about dynamic processes from single-
molecule photon arrival trajectories. We specifically address the
problem of extracting the rate of conversion between states and
the number of states involved. We include treatment of the
statistical uncertainties present in this type of single-molecule
measurement and analysis to allow the determination of the
significance of any differences observed between molecules.
Our method allows us to demonstrate the fundamental limits
of precision for determining this dynamic information by
applying it to simulated data and to determine the degree to
which experimental limitations due to background and detector
crosstalk further limit the determination of dynamic information.
Quantification of the fundamental precision limits of parameters
derived from single-molecule trajectories has important rami-
fications for experimental design and interpretation.
We have in mind a single-molecule fluorescence measurement

in which the molecular dynamics of interest will result in the
signal switching from one detection channel to the other. We
call this the “two-color problem”. Many single-molecule
phenomena can be interpreted within this context, including
spectral diffusion, fluorescence anisotropy, and FRET colocal-
ization. Single-molecule measurements are limited in precision
because of the finite number of kinetic transitions in the
observation period. We show how to calculate this “kinetic shot
noise” limit. The arrival of photons is stochastic and occurs at
a finite rate. We quantify the degree to which these character-
istics limit the fastest time scales that can be accurately
measured. The knowledge of such limits is critical in experi-
mental design, as it allows for the estimation of the lowest
possible intensity that will still permit measurement of the fastest
time scale of interest, which is important in minimizing the effect
of photobleaching. We show how background and crosstalk
between detector channels degrades the accuracy of the rates
calculated. We show that our data analysis methods give
substantial improvements in the time scales that can be measured
for single-molecule photon arrival trajectories.
The utility of maximum-likelihood methods for analysis of

single-molecule experiments has been previously noted.33-36 For
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example, single-molecule energy transfer distribution measure-
ments often report energy transfer yields that are negative or
greater than 1. This unphysical result has been attributed to the
broadening of the distribution due to finite statistical sampling
(i.e., shot noise). This is a result of directly calculating molecular
properties as one would from bulk measurements. A likelihood-
based approach would not give such unphysical results, because
the likelihood function includes information regarding the
physical process generating the signal. As a result, the most
likely parameters that give rise to the observed signal can be
determined and will not include artifacts from shot-noise
broadening.
The methods we describe operate directly on the photon

arrival trajectory of a single molecule by evaluating a likelihood
function without the need for averaging over many molecules
such as is required for correlation functions. The likelihood
function is defined by the solutions of the master equation for
the kinetic process of interest and incorporates [by means of a
hidden Markov model (HMM)] the corruption of the molecular
state information due to backround photons and spectral
crosstalk. The HMM formalism also allows us to directly model
the effects of temporal heterogeneity, which can be considered
to be the corruption of the molecular state information by the
spectroscopic degeneracy of multiple molecular states. We
demonstrate that this likelihood-based approach yields unbiased
estimates of the molecular interconversion rate from the raw
data stream with little or no user “tweaking” of the algorithm
and that the uncertainty in the estimate of that rate remains low
even when the interconversion rate reaches or exceeds the
photon detection rate. We also show that the HMM approach
is remarkably robust with respect to degradation of the signal
by background and crosstalk photons. These results not only
confirm the utility of the methodology, but also are useful in
experimental design. We demonstrate how HMM-based meth-
ods, together with statistical model selection, can be used as an
alternative to higher-order correlation function analysis for the
detection of intermittency or temporal heterogeneity with a
simple example involving a kinetic model previously studied
by Schenter et al.18 in the context of non-Markovian fluctuations
of enzymatic reaction rates.

Theory and Computational Methods
The State Trajectory. For clarity of presentation in this

paper, we primarily consider two-state kinetic models, i.e., a
molecule that can exist in one of two discrete states, A and B,
that interconvert with Poisson kinetics at rates k1 and k2

Suppose that we are given complete knowledge of the state of
a molecule at all times t (0 g t g T), which we will call the
“state trajectory” of the molecule. Although this state trajectory
cannot generally be observed by single-molecule methods, it is
of interest as a theoretical limit corresponding to “complete
information” about the system. Because the time spent in a given
state for a Poisson process is exponentially distributed,37,38 given
k1 and k2, we can easily calculate the likelihood for any state
trajectory D

where NA and NB are the numbers of residences in states A and
B, respectively; ti

(A) and ti
(B) are the lengths of the ith residences

in states A and B, respectively; and TA and TB ) T - TA are
the total amounts of time spent in states A and B, respectively.
The maximum-likelihood estimates of the rates k1 and k2 are
those that maximize P(D|k1,k2) and are given by NA/TA and NB/
TB, respectively. Alternatively, one can adopt a Bayesian
approach, which allows one to estimate not only the optimal
values of k1 and k2, but also their uncertainties, in a conceptually
straightforward manner.39 In this formulation, the joint posterior
probability of k1 and k2 given the data, P(k1,k2|D), can be
evaluated using Bayes’ theorem

where P(D|k1,k2) is the likelihood of the data as above and
P(k1,k2) is a prior probability over the rates. If we consider a
uniform prior, i.e., one that is a nonzero constant for positive
values of k1 and k2 and zero otherwise, then P(k1,k2|D) is equal
to the likelihood function to within a normalization factor (for
positive k1 and k2). The shape of the P(k1,k2|D) surface as a
function of k1 and k2 constitutes a representation of our
knowledge of k1 and k2 given the data. The normalization of eq
2 with respect to k1 and k2 is straightforward, and the posterior
probability is given by a product of gamma distributions

The mean and variance of k1 are given by (NA + 1)/TA and (NA
+ 1)/TA2, respectively, and similarly for k2 (with A replaced
by B).40 Therefore, the estimates of k1 and k2 in the complete
information limit are statistically independent and depend only
on the total residence time and number of residences in each
state.
The Noiseless Photon Trajectory and Markov Processes.

As mentioned above, one cannot, in general, observe the state
trajectory directly. At best, one can know the state of the
molecule at a finite number of times corresponding to the
arrivals of fluorescence photons at the detector (which, for
example, can be determined by a Poisson process unrelated to
the AT B interconversion). We will call such a finitely sampled
state trajectory a “noiseless photon trajectory”. If the underlying
kinetics in eq 1 is Poisson, then the sequence of states in a
noiseless photon trajectory is a Markov chain corresponding to
the well-known “random telegraph process”.38 The transition
probabilities of the random telegraph process are determined
by the rates k1 and k2 and the time between photon arrivals ∆t,
and they are expressed by the conditional probabilities (solutions
of the master equation) for being in state Si at a time ∆t after
being in Sj, P(Si|Sj,k1,k2,∆t)

A [\]
k2

k1
B (1)

P(D|k1,k2) ) (
i)1

NA

k1e
-k1ti(A))(

i)1

NB

k2e
-k2ti(B))

) (k1
NAe-k1TA)(k2

NBe-k2TB) (2)

P(k1,k2|D)  P(D|k1,k2) P(k1,k2) (3)

P(k1,k2|D) ) ( TA
NA+1

Γ(NA + 1)
k1
NAe-TAk1)( TB

NB+1

Γ(NB + 1)
k2
NBe-TBk2)

(4)

P(A|A,k1,k2,∆t) )
k2

k1 + k2
+

k1
k1 + k2

e-(k1+k2)∆t

P(A|B,k1,k2,∆t) )
k2

k1 + k2
[1 - e-(k1+k2)∆t]

P(B|A,k1,k2,∆t) )
k1

k1 + k2
[1 - e-(k1+k2)∆t]

P(B|B,k1,k2,∆t) )
k1

k1 + k2
+

k2
k1 + k2

e-(k1+k2)∆t (5)
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Because the transition probabilities depend on the time between
photon arrivals ∆t and because those times are themselves a
random variable, the transition probabilities are not constant
(as they are in standard Markov chains). However, this is not a
problem, because for any given data set, all of the ∆t values
are known, and therefore, all of the transition probabilities can
be calculated as functions of k1 and k2 using eq 5.
The posterior distribution of k1 and k2 given a noiseless photon

trajectory D is no longer given by gamma distributions, as we
do not, in general, have any knowledge about the state of the
molecule at times other than photon arrivals. However, we can
make use of the Markovian nature of the process, which allows
us to write the overall likelihood of the data as the product of
conditional probabilities

where D is the data vector (D1, ..., DN-1, DN) corresponding to
the state of the molecule (A or B) at each of the photon arrival
times and ∆ti is the time elapsed between the ith and (i + 1)st
photon. The first factor in eq 6 is simply the equilibrium
probability of state i (A or B), and the following conditional
probabilities are given by eq 5. Although this no longer gives
a simple closed-form solution as in eq 2, the maximum-
likelihood estimates of the rates k1 and k2 can be found by
nonlinear optimization, while the posterior probability can be
normalized using numerical integration, and visualized using a
two-dimensional contour plot. However, we have chosen to
show results below only for the one-dimensional case (i.e.,
assuming k ) k1 ) k2) to simplify the graphical presentation.
The Noisy Photon Trajectory and Hidden Markov Mod-

els. The preceding analysis assumed that, for each photon arrival,
we have perfect knowledge of the state of the molecule at that
time. As discussed in the Introduction, this is not normally the
case for experimental single-molecule fluorescence data, which
routinely contain noise resulting from Raman scattering back-
ground and spectral crosstalk. For example, consider the case

of data that are ideal except for the presence of background
scattering. Background photon data are completely uncorrelated
with the state of the molecule and can be described completely
by the probability of the arrival of a background photon in
channel 1, which we denote as pb1. The probability that a
background photon will arrive in channel 2 is simply 1 - pb1.
Given that the molecule is in state A, the probability, p1, that a
photon will arrive in channel 1 (as opposed to channel 2) is
given by

where ps is the probability that any given photon is a signal
photon. The corresponding probability for channel 2 is

while the analogous results for molecular state B are

and

Therefore, the observed data (the arrival channel of each photon)
can be thought of as a probabilistic function of an unobserved
Markov process (the state of the molecule), which is the classic
definition of a hidden Markov model (HMM) (Figure 1).41
HMMs have been extensively used in fields as diverse as

speech recognition, bioinformatics, neuroscience, climatology,
and finance, and the associated methodology has developed
rapidly.42-44 In HMM language, the states of the unobserved
Markov chain are called the “hidden states” (in our case, A
and B), and each hidden state has associated with it an “emission
probability” for each observable (eqs 7-10 in our case). In
contrast to standard HMM approaches, the transition prob-
abilities between hidden states are not constant, but depend on
the time elapsed since the previous photon arrival, and they are
given by the random telegraph process master equation solutions

Figure 1. Schematic diagram of the hidden Markov model used to analyze single-molecule photon trajectory data using a two-state exchange
model (eq 1) that allows for the presence of background photon noise. Each box represents the state of the molecule at the time of a photon
detection event. The model can “transition” from box to box (possibly returning to the box it came from) depending on the transition probabilities
P(Si|Sj,k1,k2,∆t) as given by eq 5, where ∆t is the time elapsed since the previous photon detection event. Each transition corresponds to the
detection of a photon. The photon can arrive in either channel 1 or channel 2, with relative probabilities given in each box (known as the “emission
probabilities”). A formally identical HMM can be used to model spectral crosstalk and the combination of background scatter and crosstalk; however,
the meanings of the emission probabilities would then be given by eqs 12 and 13, respectively.

P(D|k1,k2) ) P(D1|k1,k2)
i)1

N-1

P(Di+1|Di,k1,k2,∆ti) (6)

P(p1|A) ) ps + (1 - ps)pb1 (7)

P(p2|A) ) 1 - P(p1|A) ) (1 - ps)(1 - pb1) (8)

P(p1|B) ) (1 - ps)pb1 (9)

P(p2|B) ) ps + (1 - ps)(1 - pb1) (10)
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(eq 5). Given values for the emission and transition probabilities
and full knowledge of the hidden states, one could easily
calculate the likelihood of a noisy photon trajectory by simply
modifying eq 6 to include emission probabilities. However, the
hidden state sequence is unknown, making the evaluation of
the likelihood more difficult. On the surface, calculation of the
likelihood would involve optimizing or averaging over all
possible hidden state trajectories, which is computationally
impossible for reasonably sized data sets. However, the special
structure of the HMM allows one to perform the optimization
or averaging in a recursive manner, thereby avoiding the
combinatorial explosion implied by an explicit enumeration of
all possible hidden state sequences.42-44 In our case, the
recursion can be constructed by noting that the joint probability
ft(A) ) P(ω1,ω2,...,ωt,ht)A) that the arrival channel sequence
is (ω1, ω2, ..., ωt) and that the molecule is in hidden state ht )
A at time t can be written as

where the emission probabilities P(ω1|A) are given by eqs 7
and 8 and the transition probabilities are given by eq 5. An
analogous recursion can be written for ft+1(B) in terms of ft(A)
and ft(B). The recursion is initiated using f1(A) ) P(ω1,h1)A)
) P(ω1|A) P(A), where P(A) is the equilibrium probability of
the molecule being in state A, and similarly for f1(B). The final
overall averaged likelihood is simply fN(A) + fN(B), where N
is the number of photons. Equation 11 is known as the “forward”
recurrence relation. An equivalent “backward” recurrence can
also be formulated by beginning at the final data point and
proceeding in the opposite direction using the conditional
probabilities bt(A) ) P(ωt+1,ωt+2,...,ωN|ht)A) and bt(B) )
P(ωt+1,ωt+2,...,ωN|ht)B).42-44 Traditionally, an expectation-
maximization procedure known as the Baum-Welch algorithm
has been used to estimate unknown HMM parameters;42,43
however, in principle, any nonlinear optimization algorithm can
be used.41 In our case, we have estimated the properties of the
posterior probability of k1, k2, and the background scattering
parameters by Monte Carlo sampling (see below).
The effect of spectral crosstalk can be modeled using exactly

the same HMM as for background photons. However, the
emission probabilities are now given by

where pxA2 and pxB1 are the leakage probabilities of state A into
channel 2 and state B into channel 1, respectively. The emission
probabilities for modeling background photons and crosstalk
simultaneously are simply the combination of eqs 7-10 and
eq 12

Although eq 13 shows that a straightforward two-state HMM
can be used to model the simultaneous presence of background
and crosstalk, it should be noted that, without prior information,
one cannot use the HMM parameters to estimate the relative
amounts of background and crosstalk, as both processes
contribute to the model via the emission probabilities P(p1|A)
and P(p1|B) in a way that prevents their simultaneous estimation.
However, a lack of knowledge of the relative amounts of
background and crosstalk does not prevent the use of the HMM
for the determination of the rates of the kinetic process.
Computational Methods. The analyses described in this

paper were performed using synthetic data. Data were generated
by first constructing a state trajectory for the molecule based
on the kinetic scheme of eq 1. This was done by choosing an
initial state based on the equilibrium probabilities and generating
waiting times distributed according to an exponential distribution
with rate k1 if the molecule is in state A and k2 if the molecule
is in state B.38 A set of photon detection times were then
generated with interphoton times exponentially distributed with
a photon detection rate kp. For each photon detection event, the
state trajectory can be used to determine the channel in which
that photon would, under ideal circumstances, be detected (i.e.,
channel 1 for state A and channel 2 for state B). The resulting
list of photon arrival times and channels represents a realization
of a noiseless photon trajectory consistent with the rates k1, k2,
and kp.
The effect of background scattering and spectral crosstalk

were simulated by modifying the photon arrival channels of
the above noiseless photon trajectories. To simulate background
scattering, each photon in the noiseless photon trajectory was
replaced by a background photon with probability 1 - ps and
was assigned to channel 1 or 2 with probabilities pb1 and 1 -
pb1, respectively. Similarly, spectral crosstalk was simulated by
changing each channel 1 photon in the noiseless trajectory to
channel 2 with probability pxA2 and each channel 2 photon to
channel 1 with probability pxB1. This procedure was also
performed on all signal photons in the background-corrupted
trajectory to generate a trajectory containing both crosstalk and
background.
All parameter estimation was done from a Bayesian perspec-

tive under a uniform prior in closed form for state trajectory
data, by direct evaluation of the posterior probability for
noiseless photon trajectory data or by means of Metropolis
Monte Carlo sampling over the HMM parameters45,46 for models
containing noise. For all of the analyses presented here, the noise
levels (i.e., the emission probabilities) were considered to be
unknown and were treated as adjustable parameters in the model.
The Monte Carlo sampling was based on the joint posterior
probability of the HMM model parameters calculated directly
using the forward recursion with rescaling to prevent numerical
underflow.41,44,47 The result of a Monte Carlo simulation is a
set of points in the parameter space that are distributed according
to their posterior probabilities, from which it is straightforward
to estimate moments (e.g., means and standard deviations) and
other summary statistics. The Metropolis proposals were gener-
ated from a multivariate normal density with means and
covariance matrix chosen in an iterative manner as described
in ref 48 to maintain a rejection rate of approximately 40%.

Results and Discussion

The Complete Information Limit.We began by generating
100-ms-long synthetic state trajectories as described above using
exchange rates k1 ) k2 ) k of 0.1, 0.5, 1, 5, 10, 50, 100, 500,
1000, 5000, and 10 000 ms-1. Although such trajectories are

ft+1(A) ) P(ω1+1|A)[P(A|A,∆t) ft(A) + P(A|B,∆t) ft(B)]
(11)

P(p1|A) ) 1 - pxA2
P(p2|A) ) pxA2
P(p1|B) ) pxB1

P(p2|B) ) 1 - pxB1 (12)

P(p1|A) ) ps(1 - pxA2) + (1 - ps)pb1
P(p2|A) ) pspxA2 + (1 - ps)(1 - pb1)

P(p1|B) ) pspxB1 + (1 - ps)pb1
P(p2|B) ) ps(1 - pxB1) + (1 - ps)(1 - pb1) (13)
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not directly experimentally observable, they represent a lower
limit on the uncertainty in the estimates of the exchange rate
and provide us with the fundamental limit for parameter
estimation from a finite-length trajectory. We considered each
synthetic state trajectory as if it were experimental data and
asked how well we could infer the exchange rate k using eq 4
(under the assumption k ) k1 ) k2). As might be expected, the
estimated values for k are extremely good; however, the relative
uncertainties in those estimates vary over more than 3 orders
of magnitude from 37% at k ) 0.1 ms-1 to 0.01% at k ) 10 000
ms-1 (Table 1). This result follows from the fact that the relative
uncertainty decreases as the square root of the number of A T
B interconversions observed. Because, for a given finite
observation time, we observe more interconversions when k is
larger, the relative uncertainty will decrease monotonically as
k increases. As discussed above, this relative uncertainty
represents a theoretical lower bound, because it assumes
complete knowledge of the state of the molecule at all times
during the observation period.
Noiseless Photon Trajectories. To investigate the loss of

information due to finite sampling of the state trajectory, we
generated noiseless photon trajectories based on the above state
trajectories using a photon detection rate, kp, of 100 ms-1. For
each trajectory, the logarithm of the likelihood under the
assumption of k1 ) k2 ) k was calculated by directly evaluating
the sum of the logarithms of the conditional probabilities in eq
6. The mean and standard deviation of k under the posterior
distribution were calculated using numerical quadrature and are
shown in Table 1 and Figure 2. Because the results depend only
on the relative magnitude of k compared to kp and the total
observation time T, the abscissa of Figure 2 is given in
dimensionless units of k/kp.
The dependence of relative uncertainty in the estimate on k

is interesting, in that it approaches the theoretical complete
information limit (where the uncertainty is defined completely
by the relative size of k and the inverse of the observation time)
for very small values of k/kp, but it begins to increase
substantially for k/kp > 0.1. This is understandable, because
when k, kp, there are many photon arrivals for every residence
time; therefore, very little loss of information occurs as a result
of the finite sampling of the state trajectory. However, as k/kp
approaches and exceeds unity, we lose information about the
precise length of each residence. In addition, it becomes

increasingly likely that a particular residence will be completely
unobservable because no photon arrives during that time. Thus,
the relative uncertainty has contributions from two competing
effects: the finite number of transitions when k is small and
approaches T-1 (kinetic shot noise) and the finite sampling of
the state trajectory when k is large and approaches kp. This
results in a V-shaped dependence of relative uncertainty on k
with a minimum in the neighborhood of k/kp ) 0.5 (Figure 2,
solid curve).
It is remarkable that one can obtain relative uncertainties of

∼3% even when the interconversion rate k/kp ) 1 and that the
uncertainty increases to only 10% when k/kp) 10. This suggests
that useful information can be obtained for much faster kinetic
regimes than have typically been studied, and it is a significant
benefit arising from measuring the photon arrival trajectory over

TABLE 1: Results for Likelihood-Based Analyses of Synthetic Single-Molecule Trajectory Data
state

trajectorya
noiseless

photon trajectoryb backgroundc crosstalkd
background +
crosstalke

true k
(ms-1)

estimate
(ms-1)f

rel.
uncert.
(%)g

estimate
(ms-1)f

rel.
uncert.
(%)g

estimate
(ms-1)f

rel.
uncert.
(%)g

estimate
(ms-1)f

rel.
uncert.
(%)g

estimate
(ms-1)f

rel.
uncert.
(%)g

0.1 0.140 ( 0.037 37 0.110 ( 0.033 33 0.111 ( 0.035 35 0.112 ( 0.035 35 0.112 ( 0.036 36
0.5 0.550 ( 0.074 15 0.526 ( 0.073 15 0.539 ( 0.077 15 0.555 ( 0.083 17 0.550 ( 0.086 17
1 1.04 ( 0.10 10 0.99 ( 0.10 10 0.98 ( 0.11 11 0.99 ( 0.11 11 1.02 ( 0.12 12
5 4.91 ( 0.22 4.4 5.06 ( 0.25 5.0 4.89 ( 0.28 5.6 4.97 ( 0.36 7.1 4.77 ( 0.36 7.2
10 9.73 ( 0.31 3.1 9.76 ( 0.38 3.8 9.53 ( 0.46 4.6 9.73 ( 0.61 6.1 9.25 ( 0.66 6.6
50 48.9 ( 0.7 1.4 49.4 ( 1.5 3.1 51.2 ( 2.4 4.9 49.9 ( 3.8 7.6 49.8 ( 4.5 8.9
100 99.2 ( 1.0 1.0 97.3 ( 3.3 3.4 95.8 ( 5.3 5.3 94.7 ( 8.6 8.6 95 ( 11 11
500 499.5 ( 2.2 0.4 502 ( 31 6.1 500 ( 46 9.3 483 ( 88 18 501 ( 88 22
1000 996.2 ( 3.2 0.3 1118 ( 97 9.8 1143 ( 174 17 1297 ( 272 27 1177 ( 370 37
5000 5014.7 ( 7.1 0.14 6715 ( 1625 25 5422 ( 1495 30 5489 ( -h -h 5179 ( -h -h

10 000 9980 ( 10 0.10 9120 ( 2182 37 17 703 ( 10 672 107 19 253 ( -h -h 36 122 ( -h -h

a Complete knowledge of the molecular state at all times for an observation period of 100 ms. b State trajectory restricted to knowledge of the
molecular state at photon arrivals (kp ) 100 ms-1). c Noiseless photon trajectory with background photons (ps ) 0.909, pb1 ) 0.5). d Noiseless
photon trajectory with crosstalk photons (pxA2) pxB1) 0.15). e Noiseless photon trajectory with background and crosstalk photons (above parameters).
fMean ( standard deviation of marginal posterior probability density of k. g (Standard deviation of marginal posterior probability density of k)/
(true k) h Standard deviation of marginal posterior probability density is undefined, and only the maximum-likelihood estimate of k can be obtained.

Figure 2. Dependence of the relative uncertainty in the estimation of
k as a function of the ratio k/kp, where kp is the photon detection rate
(data from Table 1). The dashed gray data are for the complete
information limit derived from analysis of the state trajectory data (a
value of kp ) 100 ms-1 was used for plotting purposes only) and are
completely determined by the relative size of k and the inverse of the
total observation time. The solid line corresponds to noiseless photon
trajectories generated by sampling the state trajectories with a Poisson
rate of kp ) 100 ms-1. The remaining lines correspond to the addition
of varying amounts of noise to the noiseless photon trajectories:
background scatter with ps ) 0.909, pb1 ) 0.5 (dotted), crosstalk with
pxA2 ) pxB1 ) 0.15 (dashed), and both (dot-dashed).
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binned measurements. Because the photons stochastically sample
the state trajectory, there are a substantial fraction of photons
closer together temporally than the mean interphoton time. This
effectively increases the bandwidth of the measurement by an
order of magnitude or more over measurements binned at the
photon count rate.
In addition to demonstrating the power of the direct likeli-

hood-based analysis of photon trajectory data, Figure 2 can also
be used in the context of experimental design. In general, to
minimize the effect of photobleaching, one would like to use
the lowest possible laser intensity that will still allow measure-
ment of the fastest time scale of interest. If one has an
approximate guess for the fastest interconversion process in the
system of interest, then for a given relative uncertainty, one
can use the curves of Figure 2 to determine the lowest photon
detection rate that will allow the measurement of that rate to
the desired precision. For example, if one required a precision
of a few percent, then one would need to use sufficient laser
power to obtain a photon arrival rate at least 5 times the expected
interconversion rate (in the absence of noise). On the other hand,
if one were willing to tolerate a relative uncertainty approaching
10%, then one could decrease the laser power so that the photon
arrival rate was slower than the interconversion rate.
Noisy Photon Trajectories and Hidden Markov Models.

The most serious source of nonideality in real photon trajectories
is the presence of spectral crosstalk and background photons.
This results in a random fraction of the observed photons being
anticorrelated or uncorrelated with the molecular state. In other
words, some fraction of the observed photons will be “lying”,
i.e., their arrival channel will be the opposite of the channel
that would be expected on the basis of the actual state of the
molecule. To investigate the effect of background photons on
the naive use of eq 6, we perturbed the noiseless photon
trajectories to simulate background photons with ps ) 0.909
(i.e., a signal-to-background ratio of ∼10:1) and pb1 ) 0.5 (a
worst-case scenario of equal background in both channels). The
results are shown in Figure 3 (circles). The effect of excluding
noise from the model is quite catastrophic when k is small,
resulting in misestimates of k by more than a factor of 100 when
k ) 0.1 ms-1, but it becomes less severe as k increases. The
very poor performance of eq 6 in the presence of background

photons is due to the fact that the model does not include noise,
but rather assumes that every photon is “telling the truth”. For
interconversion rates that are slow relative to the photon arrival
rate, this leads to data where the molecule is clearly in a single
state for a long period but with one photon occasionally
“straying” into the other channel. Such data are extremely
unlikely under a simple Poisson model, and use of such a model
by the naive application of eq 6 results in grossly inflated
estimates of the interconversion rate. At larger values of k, the
background photons tend to “blend in” more with the signal,
thereby causing a much lower systematic error.
One can incorporate the presence of background photons into

the likelihood-based approach using an HMM as discussed
above, and this results in estimates that are much closer to the
true value than those obtained by the naive application of eq 6
(Figure 3, squares). However, the price paid for this improved
accuracy is a decrease in precision, particularly when k is large
(Figure 2, dotted line). This is not surprising, given that the
HMM results are obtained by implicitly averaging over all 2N
possible hidden variable state sequences. However, when k is
small, the relative uncertainty remains near the complete
information limit. This is because very few of these 2N sequences
are likely under a Poisson model for exchange, allowing the
HMM to determine which photons are lying with a high degree
of confidence. Similar results are obtained with the introduction
of crosstalk or the combination of background and crosstalk
(Table 1 and Figure 2, dashed and dot-dashed lines).
In our analysis, we assumed that the noise photon rate and

distribution is completely unknown. However, such knowledge
could be obtained experimentally from the pattern of photon
arrivals in the absence of sample. One might ask whether and
how much such a priori knowledge of the noise properties could
improve the estimate of the interconversion rate. This question
is relevant from the perspective of experimental design: one
would want to know how much effort to put into experimentally
characterizing the noise characteristics of the hardware. In
general, one will observe an improvement only if there is
substantial correlation between the uncertainties in k and the
HMM emission probabilities. We have observed that such
correlation is practically zero when k is small or when the noise
level is low (Figure 4A). Therefore, prior information about
the amount of crosstalk and/or background scatter will not
improve the estimate of k in this limit. Some weak correlation
is observed as k and/or the noise level increases (Figure 4B),
suggesting that very careful experimental measurement of the
background and crosstalk parameters might give a slight
improvement in the estimate of k. The marginal gain in the
precision and accuracy appears to be quite small, however, and
does not justify the expenditure of significant effort.
To investigate the ability to infer k as a function of the amount

of background photons, we generated 13 data sets using k )
50 ms-1 and signal photon probabilities, ps, ranging from 0.976
(signal-to-background ratio S/B ≡ ps/(1 - ps) ) 40) to 0.231
(S/B) 0.3) using equal background photon probabilities in each
channel (pb1) 0.5) and repeated the analyses of Figure 2. Those
results (along with the results for ps ) 0.909 described above)
are shown as the solid curve in Figure 5. Remarkably, the
relative uncertainty in k remains below 20% even for S/B levels
approaching 1. Although the increase in relative uncertainty as
a function of background level is approximately exponential,
the rate of increase is nonetheless surprisingly slow, indicating
that the likelihood-based HMM analysis strategy is quite robust
for small or moderate values of k/kp. We repeated the above
analysis using an asymmetric background photon distribution

Figure 3. Maximum-likelihood estimate of the rate (i.e., the mode of
the posterior under a uniform prior) obtained using a naive application
of eq 7 to photon trajectory data containing background scatter with
parameters ps ) 0.909 and pb1 ) 0.5 (circles) and maximum-likelihood
estimates obtained using a hidden Markov model that incorporates noise
(squares) as a function of the true rate k. The line of unit slope
(corresponding to perfectly unbiased estimation) is shown in dashes.
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(pb1 ) 0.8), and the results are shown in the dashed curve of
Figure 5. The relative uncertainties are very similar to the pb1
) 0.5 case, with only a small decrease in uncertainty at very
high background levels. Overall, the robustness of the analysis
is negligibly affected by the distribution of background photons
between channels and depends only on the overall signal-to-
background ratio. Because the models for background and
crosstalk are mathematically identical, we expect similar results
for the effect of asymmetry in crosstalk.
Extension to Models Exhibiting Temporal Heterogeneity.

We have shown that likelihood-based methods that make use
of hidden Markov models are a robust tool for estimating
interconversion rates from single-molecule photon trajectories
in the context of two-state jump kinetics. They provide not only
reliable parameter estimates, but also statistically rigorous
estimates of the uncertainty in those estimates. Another advan-
tage of HMMs in the context of photon trajectory analysis is
that they can be easily generalized to more complex non-two-
state models, and provide a statistical context in which to
evaluate the relative goodness-of-fit of different models. As an

example, consider the following four-state model studied by
Schenter and co-workers18

where the states A and A (and B and B) are spectroscopically
indistinguishable. This degeneracy results in apparent dynamics
that is non-Markovian and is said to exhibit conformational
memory or temporal heterogeneity. The memory effect is the
result of not including enough states in the description of the
dynamics, and expansion of the model from the two spectro-
scopically distinguishable states to four results in simple
Markovian dynamics. Models of this type have been used, for
example, to model enzymatic reaction rates that are fluctuating
as a result of conformational dynamics in the enzyme.18
Alternatively, one can also view this kinetic scheme as a barrier-
crossing model with two deep wells (corresponding to A/A and
B/B) where the well depths and/or barrier heights are fluctuating
in a Poissonian manner. In previous work, this model has been
fit using an approach based on correlation functions.18 However,
because the ordinary two-point correlation function does not
contain sufficient information to reliably distinguish between
the four-state model (eq 14) and the simpler two-state model
(eq 1), multipoint correlation functions, which are more difficult
to interpret and suffer from higher levels of noise, are required.
It is straightforward to formulate an HMM based on the

kinetic scheme of eq 14. Let us assume for the moment that
there is no background scatter and that the spectral crosstalk is
zero, i.e., that all photons from states A and A arrive in channel
1 and all photons from states B and B arrive in channel 2. If
we consider a model with four hidden states (A, A, B, and B),
then the observed data is a deterministic function of the hidden

Figure 4. Scatter plot of Metropolis Monte Carlo output for the analysis
of photon trajectories containing both background and crosstalk noise
(P(p1|A) ) 0.818 15) generated using k ) (A) 1 and (B) 1000 ms-1
using an HMM analysis. Each panel corresponds to a projection of the
full set of Monte Carlo samples from the posterior probability
distribution onto a plane corresponding to the interconversion rate k
and the emission probability for state A. The fact that the cloud of
points is elongated and tilted from the horizontal in panel B is a
graphical indication that there is a weak correlation between the inferred
rate and emission probability, whereas the lack of such behavior in
panel A indicates the lack of correlation.

Figure 5. Dependence of the relative uncertainty in the estimation of
k as a function of the background photon level for a 100-ms photon
trajectory generated using k) 50 ms-1, kp) 100 ms-1, pb1) 0.5 (solid/
circles), and pb1 ) 0.8 (dashed/squares). The signal-to-background ratio
is defined to be ps/(1 - ps). The lower long-dashed horizontal line
represents the theoretical lower bound on the relative uncertainty
corresponding to the complete information limit, whereas the upper
horizontal short-dashed line represents the ps ) 0 limit corresponding
to sampling the state trajectory with a Poisson rate of kp ) 100 ms-1.
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states, i.e., we have an HMM where the emission “probabilities”
are identically 0 or 1. This is a special case of eq 11 extended
to four hidden states. All that is needed are the transition
probabilities analogous to those in eq 5. These are given by the
elements of the matrix exponential exp(Kt), where K is the
kinetic matrix

Whereas exp(Kt) can, in principle, be calculated in closed
form for a four-state model, the general solution is sufficiently
awkward that numerical solution is preferable. However, the
symmetric case where k1 ) k2 ) k, k1 ) k2 ) k, and R ) "
gives a relatively simple solution, the details of which are given
in the Appendix.
For purposes of demonstration, we generated a 100-ms-long

synthetic two-channel noiseless photon trajectory corresponding
to the kinetic scheme of eq 14 in the symmetric limit with rate
constants k ) 20 ms-1, k ) 80 ms-1, and R ) 10 ms-1 and a
photon detection rate of 100 ms-1 using an approach similar to
that described in the Computational Methods section above.38
We analyzed that trajectory using the symmetric four-state
HMM with Metropolis Monte Carlo sampling in the same
manner as for the two-state model, except that the emission
probabilities were taken to be 0 or 1 as appropriate and the
transition probabilities were those given in the Appendix. The
resulting parameter estimates (posterior mean ( standard
deviation) were k ) 16.6 ( 2.2 ms-1, k ) 93.2 ( 6.9 ms-1,
and R ) 14.4 ( 4.8 ms-1. Analysis of the same data using a
two-state model based on eq 1 with k1 ) k2 ) k (eq 6) gave a
parameter estimate of k ) 44.4 ( 2.0 ms-1, whereas the HMM
model based on eq 1 gave an estimate of k ) 41.7 ( 1.6 ms-1.
To assess the relative statistical merits of the three models, we
must correct for the fact that adding parameters to any model
will always improve the “fit”, but not necessarily the statistical
significance. One simple way in which this can be done is via
the Bayes information criterion (BIC), which is given by

where L is the maximized logarithm of the likelihood, d is the
number of dimensions in the parameter space, and N is the
number of data points.49 The BIC can be used both to select
the best fitting model and to determine the relative probabilities
of the models.49 In our case, the BIC showed that the four-state
HMM is very convincingly the best model of the three in a
statistical sense,50 thereby demonstrating the effectiveness of
an HMM-based model selection procedure as an alternative to
the multipoint correlation function for the detection of temporal
hetergeneity. Although we have used a noiseless photon
trajectory for this simple example, the effect of noise on a four-
state model could be incorporated simply by allowing the
emission probabilities to deviate from the deterministic values
of 0 and 1.

Conclusions
We have shown how likelihood-based statistical methods can

be applied to the analysis of photon trajectories from single-
molecule fluorescence experiments. The likelihood-based meth-
ods presented here will enhance the ability to extract information
about motions in proteins and macromolecular complexes from

single-molecule fluorescence experimental data. In particular,
they directly make use of the information from individual
photons without the need for binning, averaging, or other
methods that transform the data before analysis. Although
methods based on binning or averaging can make the subsequent
analysis more straightforward or familiar, they can obscure the
dynamical information, particularly if the dynamics are occurring
on time scales comparable to or faster than the binning or
averaging. The gain in bandwidth obtained by the direct analysis
of the photon trajectory is quite large, suggesting that useful
information could be obtained for dynamics occurring at rates
more than an order of magnitude faster than the photon detection
rate. In addition, the HMM methodology for the analysis of
noisy photon trajectories is remarkably robust with respect to
the amount of noise, which suggests that it will be of significant
practical utility in the analysis of real-world data.
Likelihood-based methods, particularly in their Bayesian

form, lead to natural and intuitive estimates of the uncertainties
in the estimated parameters arising from both experimental noise
and finite sampling. Realistic error estimates are critical in
experimental work, for example, in assessing the significance
of differences in rate constants under different experimental
conditions. Likelihood-based methods provide such error esti-
mates. In addition, these methods can be made to operate in a
fully automatic mode or with only minimal analyst intervention.
This is critical given the quantity of data that must be analyzed
in typical experimental situations.
For reasons of presentational clarity, the models considered

in this paper have, for the most part, been limited to two-state
exchange processes with equal forward and reverse rates.
Likelihood-based methods are certainly not limited to such
simple models. For example, unequal forward and reverse rates
represent a trivial extension and merely require additional
visualization methods. Furthermore, we have shown how more
complex models that contain larger numbers of states and exhibit
temporal heterogeneity can be addressed. In principle, models
of arbitrary complexity, including those with large numbers of
states18,51 or time-dependent rate constants,52 can be fit to photon
trajectory data using this methodology, provided that the
conditional probabilities analogous to eq 5 for the dynamic
process can be solved analytically or numerically. In addition,
the HMM used to analyze noisy photon trajectory data can also
be used in unmodified form to analyze data from other types
of single-molecule fluorescence experiments, such as those
based on resonance energy transfer. Given a choice of possible
models, it becomes critical to have reliable means of evaluating
the goodness-of-fit of each model and the statistical significance
of improvements in fit between different models. Likelihood-
based methods allow for such model evaluation and testing in
a statistically rigorous manner.
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Appendix

The conditional probabilities analogous to eq 5 for the four-
state kinetic scheme of eq 14 in the symmetric limit k1 ) k2 )
k, k1 ) k2 ) k, and R ) " are the elements of the matrix
exponential exp(Kt), where K is the kinetic matrix

K ) (-(k1 + R) k2 " 0
k1 -(k2 + R) 0 "
R 0 -(k1 + ") k2
0 R k1 -(k2 + ")

) (15)

BIC ) -2L + d ln N (16)
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The matrix exponential can be calculated from the eigenvalues
λi and eigenvectors Ui using

where U is the matrix of eigenvectors of K and

as described in ref 53. The resulting conditional probabilities
are

where

and
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K ) (-(k + R) k R 0
k -(k + R) 0 R
R 0 -(k + R) k
0 R k -(k + R)

) (A1)

exp(Kt) ) UΛ(t)U-1 (A2)

Λ(t) ) (exp(λ1t) 0 0 0
0 exp(λ2t) 0 0
0 0 exp(λ3t) 0
0 0 0 exp(λ4t)

) (A3)

P(A|A,k,k,R,∆t) ) P(B|B,k,k,R,∆t)

) 1
4(1 + e-2R∆t + e-κ+∆t + e-κ-∆t) +

k - k
4γ (e-κ+∆t - e-κ-∆t)
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