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We introduce a new approach to global data fitting based on a regularization condition that invokes
continuity in the global data coordinate. Stabilization of the data fitting procedure comes from
probabilistic constraint of the global solution to physically reasonable behavior rather than to
specific models of the system behavior. This method is applicable to the fitting of many types of
spectroscopic data including dynamic light scattering, time-correlated single-photon counting
!TCSPC", and circular dichroism. We compare our method to traditional approaches to fitting an
inverse Laplace transform by examining the evolution of multiple lifetime components in synthetic
TCSPC data. The global regularizer recovers features in the data that are not apparent from
traditional fitting. We show how our approach allows one to start from an essentially model-free fit
and progress to a specific model by moving from probabilistic to deterministic constraints in both
Laplace transformed and nontransformed coordinates. © 2008 American Institute of Physics.
#DOI: 10.1063/1.2837293$

I. INTRODUCTION

Sample heterogeneity is nearly unavoidable in spectros-
copy. In many simple systems the heterogeneity can be re-
duced to the point where it can be ignored. However, in
complex biological systems there is much to be gained from
understanding the heterogeneity. The biological machinery in
the cell, for example, relies on the dynamic nature of pro-
teins and protein assemblies.1 Intermediate species have been
identified in protein !mis"folding mechanisms.2–6 Multiple
conformations of protein-ligand complexes have been dis-
covered because of signal heterogeneity.7 The evolution of
multiple binding sites for !-lactoglobulin and the time-
dependence of the site-binding entropy in response to the
sudden presence of a strong dipole was elucidated
by the heterogeneity in a time-dependent Stokes-shift
measurement.8 Heterogeneity is a crucial element of inter-
preting single molecule measurements.3,9–12 The presence of
multiple species in misfolded !-lactoglobulin leads to very
heterogeneous signals prior to13,14 and during the assembly
of amyloid.15 To fully understand the underlying physics of
such complex systems requires approaches to data reduction
that can accommodate their heterogeneity.

Data reduction, or fitting, always requires a model. For
any phenomenon being measured there is a set, or space, of
models that could reasonably be expected to explain the data.
The fitting procedure should eliminate all parts of the model
space inconsistent with the data. From the remaining possi-
bilities, the algorithm should allow selection of the most
likely model given the experimental information. Experi-
mental information in this context includes both the explicit
data that comes from the instrumentation as well as knowl-
edge that comes from the experimental design and under-

standing of the physics of the system. These two sources of
information we will call “data” and “prior knowledge.”16

Prior knowledge is used to determine the model space
for the problem. Many experiments—including dynamic
light scattering,17–20 circular dichroism,21 dynamic nuclear
magnetic resonance,22 and fluorescence lifetime23—can be
related to their underlying physics by Fredholm integral
equations of the first kind

F!t,y" = %
a

b

A!t,k,y"f!k,y"dk . !1"

Data inversion seeks to find the function, f!k ,y", from the
noisy signal, F!t ,y"+"!t ,y", given the continuous kernel
function, A!t ,k ,y", that connects t and k, with y remaining
untransformed.

The mathematical model space comprises all possible
functions f!k ,y". In most circumstances the physical inter-
pretation of f!k ,y" is that it represents a distribution of popu-
lations of species that differ in their values of k. The goal of
the experiment is usually to determine the systematic behav-
ior of those populations with experimental changes in y,
which can represent any experimental condition such as pH,
incubation time, solvent polarity, etc. For example, determin-
ing the species population changes with temperature allows
thermodynamic parameters to be extracted.

For experiments that monotonically decay such as fluo-
rescence lifetime and dynamic light scattering measure-
ments, the kernel in Eq. !1" is A!t ,k ,y"=exp!−kt" and a=0,
and b=# provide the integration limits for a Laplace
transforma"Electronic mail: talaga@rutgers.edu.
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F!t,y" = L&f!k,y"' = %
0

#

e−ktf!k,y"dk . !2"

Solving for f!k ,y" requires inversion of integral Eq. !2".
In the presence of noise, the inverse Laplace transform is

not unique. An explicit expression for the inverse Laplace
transform24 illustrates the difficulty of direct inversion

f!k,y" = L−1&F!t,y"' = lim
i→#

!− 1"i

i!
( i

k
)i+1

F!i"* i

k
,x+ , !3"

where F!i" is the ith derivative of F. The inverse Laplace
transform is sensitive to high order derivatives that do not
exist in real data in any meaningful way; each subsequent
derivative increases the appearance of noise. As a result, all
functions, f!k ,y", that have Laplace transforms, F!t ,y", with
similar first few derivatives, but divergent higher order de-
rivatives, will be valid solutions to the inverse Laplace
transform.

Since direct inversion is problematic, an indirect ap-
proach based on least-squares optimization is typical25–27

min(*%
a

b

A!t,k,y"f!k,y"dk − F!t,y"+2) . !4"

Expression !4", though more stable, still suffers from the
problem that multiple solutions for f!k ,y" will be statistically
equivalent. As a result, the strategy that a particular optimi-
zation algorithm uses to obtain the inversion, f!k ,y", can
influence which solution is found, or even if a solution is
found.

Many algorithms exist to solve the general least-squares
problem defined by Eq. !4" and determine the inverse trans-
form, F!k ,y".25,26 A direct solution to this problem can be
obtained using methods such as singular value
decomposition.26 However, these approaches generate solu-
tions that are highly sensitive to the details of the noise and
typically give many negative values for the parameters.
Therefore, approaches that allow constraint of the solution to
positive values are desirable.

One of the most common methods for least-squares
minimization is Levenberg–Marquardt !LM".28,29 This
method is fast for small to medium sized data sets and is
appropriate for both linear and nonlinear models, but is sub-
ject to potential nonlinear instabilities.26,30 A gridded repre-
sentation of the kernel A!k , t ,y" is called a design matrix and
eliminates nonlinear instabilities because it allows the use of
linear least-squares algorithms like the active-set !AS" and
the interior-point gradient !IPG" methods.31,32 Though the
setup is common in both methods, each minimizes the gen-
eral least-squares expression very differently.

The AS method enforces non-negativity on f!k ,y" by
adding and removing basis functions from the kernel !design
matrix".31 This corresponds to expanding and contracting the
dimensionality of that solution space, in effect finding the
“right number” of exponentials on the grid to represent the
fit. This method is computationally expensive for very large
scale problems because of the continual matrix factorizations
necessary to identify the active set.32,33

The IPG method has an adaptive step size that acceler-
ates convergence while limiting itself to steps that maintain
the non-negativity of the solution at all points in the search,
unlike the AS method.32 IPG is a typical gradient method in
that it uses the entire set of basis functions and requires only
matrix-vector multiplications.34,35 Though these methods are
considered to be less accurate than the traditional AS
method,32 the decreased convergence time of IPG for large
problems makes it very useful. IPG accomplishes this by
exploiting the totally non-negative structure of the problem
to calculate the step and direction giving fits that converge
faster than the classic active-set method.32

Because many different elements of the model space will
give equally good fits to the noisy data,30 all three methods
we mention must constrain the model space, in some way, to
stabilize the inverse Laplace transform. Since many of the
solutions may not be physically reasonable, constraints can
be selected based on prior knowledge. When f!k ,y" is a
population then f!k ,y"$0. Instrumental limitations can limit
the range of k that can be determined. When y is varied
systematically then the global behavior of the individual spe-
cies populations can be invoked to limit the possible f!k ,y".
For example, the conservation of matter could provide a nor-
malization condition for f!k ,y" at each value of y. The sys-
tematic variation of y could provide an expectation of a par-
ticular functional dependence of f!k ,y" along y for particular
values of k representing different species. Limiting the model
space with prior knowledge can be done with deterministic
or probabilistic constraints.

Constraints of both types may be applied to the trans-
formed variable, k, and the nontransformed variable, y. Con-
straints in the transformed variable are formed from hypoth-
eses regarding the nature of the system, f!k ,y", across k. This
is illustrated by the upper right panel of Fig. 1 where conti-
nuity has been invoked along k. Constraints in the nontrans-
formed variable !such as time, temperature, solvent, etc." re-
quire hypotheses that generate global models leading to
specific functions or continuity conditions describing the
evolution of the system across y. This is illustrated by the
lower right panel of Fig. 1.

Deterministic constraints consider only some very small
subset of functions in the model space and forbid all noncon-
forming solutions. Such empirical functions make the tacit
prior assumption of a specific physical model for the system
that gives analytical forms for f!k ,y" that transform trivially.
A least-squares fit to F!t ,y" with these functions is equiva-
lent to the inversion. The most common way is to use a small
number !i.e., 1–3" exponential function to fit the data. This
limits the model space f!k ,y" to a small number of delta
functions. All other possible solutions have their likelihood
set to zero a priori. Global models are constructed by assign-
ing specific functions to describe the evolution of f!k ,y"
along y for all of the discrete values of k that represent a
species. A drawback is that this can forbid the “true” solution
from being obtained if it is not, by happenstance, consistent
with the deterministic constraints.

By contrast, probabilistic constraints reduce the likeli-
hood of solutions in proportion to their departure from the
constraint, but do not set the likelihood of any solutions in
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the model space to zero. Probabilistic constraints are usually
imposed by penalty functions or regularization conditions.
The new fitting functional including regularization is

%2 = &2 + '(2, !5"

where &2 is the usual sum of the weighted squared residuals,
(2 is any arbitrary regularizer functional, and ' is the
strength of the regularization.

Early work on probabilistic constraints17,30 used a sec-
ond derivative regularizer functional of the form

(2 = H!k" =% ( #2f!k,y"
#k2 )2

dk , !6"

with the assumption that this would provide the most “par-
simonious” discretized solution to the inversion problem.17

This regularizer implies piecewise linearity in k, strongly
biasing against any discontinuities. There will be many sys-
tems for which this will not be valid, such as those having
discrete distributions across k. Other regularizers have been
used to probabilistically reduce the available solution space
for the inversion by imposing expectations of the nature of
the solution in k.36,37

Maximum entropy is another criterion that is often used
as a regularizer,23,36,38,39

W = / f!k,y" − m!k,y" − f!k,y"log* f!k,y"
m!k,y"+dkdy , !7"

where m!k ,y" is the uniform distribution that gives maxi-
mum entropy. The entropy functional satisfies two conditions
that serve to define it. Entropy is maximized for flat distri-
butions. This has the physical meaning that all values of k
are not only possible but equally likely. Entropy also has the
property that it is maximized when, in a joint distribution,
the likelihood is independent.16,40 That is, when f!k ,y"
= f!k") f!y". This has the physical meaning that all species
have identical behavior under the influence of the experi-

mental variable. This is an excellent example of how as-
sumptions about the behavior of the system can creep in
without the explicit knowledge of the investigator. Also,
since entropy is an extensive property, performing a maxi-
mum entropy analysis globally is identical to performing par-
allel local analyses, so long as the likelihood at each value of
y is normalized across k. This suggests that though maximum
entropy is a useful condition for probabilistic constraint of
fitting, it is of limited benefit for global fitting in this context.

In this paper we introduce a method to exploit the global
behavior of a system !e.g., continuity" across an experimen-
tal coordinate, y, to define a global regularization condition
that does not make any assumptions about the shape or con-
tinuity in the Laplace transform dimension, k. In a typical
experiment, k is directly related to some property of the dif-
ferent species present and the concentrations of the different
species change with the experimental coordinate, y, !e.g.,
over time by some kinetic rate law". Therefore, the solution
set, f!k ,y", will often be piecewise continuous in y, implying
smooth changes in the population of individual species with
respect to y. To represent this behavior mathematically, we
introduce a global regularizer that favors solutions that sat-
isfy the continuity/smoothness condition in y,

G!y" =% ( #2f!k,y"
#y2 )2

dy . !8"

Implementation of Eq. !8" into Eq. !5" requires a general
least-squares optimization algorithm that can accommodate
the inclusion of a regularizer term. The IPG method mini-
mizes Eq. !4" by choosing the scale of the step and direction
to be as close as possible the exact minimizer without cross-
ing into the non-negative region. We augment the IPG with a
regularizer functional such that the step and direction favor
solutions with continuity in the either the k, local, or y, glo-
bal, dimensions.

To demonstrate utility of global regularization on an

FIG. 1. !Color online" Experimental
prior knowledge. With global fitting
available, prior knowledge in the form
of a regularizer can either be applied
in the Laplace transform dimension, k,
or in the experimental evolution di-
mension, y. In the left panel the indi-
vidual data transients are indicated by
the black mesh lines. In the right pan-
els, the direction of continuity condi-
tions is indicated by the black mesh
lines. The top right panel emphasizes
the continuity in the k dimension im-
plying continuous distributions of
properties. The bottom right panel em-
phasizes continuity in the y dimension
implying continuous evolution of
population.
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evolving data set, we simulate a test data set, evaluate fitting
methods and compare and contrast existing method with
methods introduced here. We also evaluate the effect of noise
on each method’s ability to reproduce the test parameter set.
Last, we show how to use global regularization in the experi-
mental domain with a traditional physical model for the spe-
cies domain to do global fitting using LM.

II. METHODS

A. IPG regularizer

The computer implementation of Eq. !4" replaces con-
tinuous variables t, y, and k with discrete variables ti, kj, and
yl with i! &1¯T', j! &1¯K', and l! &1¯Y'. Matrix no-
tation replaces continuous notation as follows. Each tran-
sient, F!t ,yl" has a design matrix

Al
#T)K$ , A!t,k,yl"/s!t,yl" ,

a solution vector

xl
#K)1$ , f!k,yl" ,

and a data vector

bl
#T)1$ , F!t,yl"/s!t,yl" .

The design matrix and the data vector are scaled by the stan-
dard deviations of the data, which were estimated by
s!t ,yl"=-F!t ,yl"+1.

We momentarily drop the subscripts in our notation
when considering one transient at a time. The minimum of
Eq. !4" occurs when the derivatives with respect to the pa-
rameters equal zero, yielding the exact minimizing equation

ATAx − ATb = 0. !9"

The details of the fitting algorithm can be found in Ref. 32.
The key feature of the algorithm is the way it determines the
scaling vector for calculating each iteration

d =
x

ATAx
. !10"

Equation !10" is the core of the IPG algorithm and makes it
less sensitive to ill-conditioned problems. Reference 32
shows that with a condition number of ATA.1016, the rela-
tive error of the fits between IPG and the active-set after 103

iterations is .10−5 and nearly five orders of magnitude better
than other scaling methods. For our global fits, typical con-
dition numbers range from 1018 to 1022 making the insensi-
tivity of IPG to condition number particularly valuable.

1. Locally regularized IPG

The same minimization principle can be applied when
considering the cost function, %2, in #Eq. !5"$,

!ATA + 'H"x − ATb = 0, !11"

where the regularizer H is now represented as the regular-
ization matrix H,

H#K)K$ =/
1 − 2 1 0 0 0 0 ¯ 0

− 2 5 − 4 1 0 0 0 ¯ 0

1 − 4 6 − 4 1 0 0 ¯ 0

0 1 − 4 6 − 4 1 0 ¯ 0

] !]
0 ¯ 0 1 − 4 6 − 4 1 0

0 ¯ 0 0 1 − 4 6 − 4 1

0 ¯ 0 0 0 1 − 4 5 − 2

0 ¯ 0 0 0 0 1 − 2 1

0 ,

!12"

where again K is the number of parameters for each tran-
sient. This second derivative regularizer matrix measures de-
parture from piecewise linearity in f!k". Other regularizers
will be appropriate depending on the available prior knowl-
edge. Details for generating different types of regularization
matrices are found in chapter 18–5 of Ref. 26. For locally
regularized IPG, we substitute !ATA+'H" for all occur-
rences of ATA in the IPG algorithm.

2. Globally regularized IPG

The global fits simultaneously consider all the available
Y transients. Setting up globally regularized IPG is analo-
gous to the locally regularized case, except that the entire
data set is fit at once. The matrices and vectors must accom-
modate the global nature of the problem. This requires con-
catenation of local data transients and parameters into global
vectors

b =/b1

b2

]
bY

0 and x =/x1

x2

]
xY

0 . !13"

The design matrices, Al are placed in a block diagonal
global-design matrix

A =/A1 0 ¯ 0

0 A2 ¯ 0

] ] ! ]
0 0 ¯ AY

0 . !14"

The regularization matrix is also expanded to incorpo-
rate continuity across the nontransformed dimension. Equa-
tion !8" specifies a global regularization matrix, G#KY)KY$. To
obtain G#KY)KY$, each element !h1,. . .,Y,1,. . .,Y" of Eq. !12",
!H#Y)Y$" is replaced by a K)K diagonal matrix

G =/h1,1I h1,2I ¯ h1,YI
h2,1I h2,2I ¯ h2,YI

] ! ]
hY,1I hY,2I ¯ hYYI

0 , !15"

where I is a K)K identity matrix.
For global regularization, we substitute !AT+A+'G"

→ATA in the IPG algorithm.
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B. Data simulations

Ten !Y =10" time-correlated single-photon counting
!TCSPC" measurements were synthesized with T=4096 bins
over a 50 ns time-window range to evaluate the utility of the
global regularization method. Each transient, F!t ,yl", is gen-
erated by the matrix multiplication of an exponential decay
matrix S #with each element, Sij =exp!−kjti"$ by a K=1200
synthesized solution set !the examplar" f̃= f̃!k ,yl". The syn-
thesized solution set was evenly spaced in k−1, from 0.01 to
12 ns. The grid for the simulation was tenfold denser than
that used for the fit to better simulate the presence of con-
tinuous distributions.

The exemplar solution set, f̃!k ,y", was generated by rep-
resenting four evolving species, each by a Gaussian distribu-
tion

f̃!k,y" = 1
i=1

4

Ci!*i
-2+"−1e−1/2#!k − ki"/*i$

2
. !16"

Such fluorescence decay components commonly arise and
are difficult to fit.36,37,41,42 Species 1 was centered at k1

−1

=7 ns, concentration C1=1 and had an evolving width

*1!y" = *0.2 +
0.7

e−!5−y"/2 + 1
+ ns.

Species 2 !k2
−1=2 ns,*2

−1=0.2 ns" has an initial
concentration of C2=0.5 and converts into species
3 !k3

−1=3 ns,*3
−1=0.2 ns" with a first order rate of 0.2/

experimental unit in y. Species 4 was nonevolving in both k
and y, !k4

−1=1 ns,*4
−1=0.2 ns" with constant concentration

of C4=0.3. The right two panels in Fig. 1 show the exemplar
solution, f̃!k ,y", for the evolving test case, F!t ,yl".

The intensity decays generated were convoluted with an
instrument response function typical of microchannel plate
photomultipliers.7,43 We examined the influence of noise on
the fitting algorithms by generating data sets with different
intensity levels. The peak convoluted decay intensities were
scaled to 11 values: I=102, 2)102, 5)102, 103, 2)103,
5)103, 104, 2)104, 5)104, 105, and 108. We included un-
correlated background !e.g., dark counts" at an intensity level
of 30 counts for every bin for all signal-to-noise !S:N" levels.
The noise of photon counting was simulated from a Poisson
distribution at the intensity of each bin in F!t ,y". For ex-
ample, the case with an intensity of I2104 peak counts and
30 background counts has a S:N level of 2100:1 at the
peak.

C. Fitting mechanics

All fits were performed with Igor Pro 6.01 !Wavemet-
rics, Inc." running on a 2.16 GHz Intel DuoCore MacBook
Pro under Mac OS X 10.4 !Tiger" with 2 GB of RAM.
Active-set and IPG were implemented as user-defined func-
tions. Nonlinear least-squares fitting was performed imple-
menting IGOR’s Levenberg–Marquardt !LM" curvefit
package.

1. Levenberg–Marquardt

We performed four types of exponential, instrument-
response-convolved fits utilizing the LM method: Three ex-
ponential model, four exponential model, global model, and
a regularized global model fit. For the global model fit, the
entire data set was fit simultaneously. The global model was
chosen based on the global IPG fits, the full rationale for
which appears in the results.

Three and four exponential fits were of the form
F!t ,y"=F0!y"+1i=1

n Pi!y"e−kit, where n=3 or 4, respectively.
All parameters F0, Pi, and ki were unconstrained. The data
were weighted by the estimated standard errors. Each data
transient was fit individually. To provide the best likelihood
of successful convergence, the initial guesses were deter-
mined from a successful multiexponential fit for the high S:N
limit !I=108". For each S:N ratio the initial guesses were
scaled according to the intensity and used for the first tran-
sient. The resulting fit parameters were then used as the ini-
tial guess for the next transient in the data set. Convergence
of the algorithm occurred when either one of the two condi-
tions were met: The number iterations reached a maximum
of 100, or fractional decrease of sum of the weighted residu-
als, &2, from one iteration to the next was less than 0.001.

Global models were performed on an entire data set for a
particular signal-to-noise ratio. The chosen model for the
global fit was represented by one stretched exponential plus
three exponentials

F!t,y" = F0!y" + P1!y"e−&k1!y"t'!!y"
+ 1

i=2

4

Pi!y"e−kit, !17"

where k2, k3, and k4 were global parameters and !!y", k1!y",
P2!y", P3!y", P4!y", and F0!y" were local. Initial guesses
were determined using the same method as the local fits. All
parameters were constrained to be positive and the following
parameters were constrained by 0.8,k4

−1,1.2 ns, 1.5
,k2

−1,2.5 ns, 2.8,k3
−1,3.5 ns, and !-1. The rationale

for the constraints is in Sec. III. A perturbation coefficient
applied to stabilize the estimates of the numerical derivatives
calculated by LM was necessary for a successful fit. In IGOR
Pro, the coefficient is implemented via an “epsilon wave”
and was set to 0.01. The convergence criteria were the same
as the local LM fits.

The globally regularized model applies the second de-
rivative global continuity condition on same local parameters
across the nontransformed coordinate. The regularizer for
any set of local parameters, P!Y)1", is

(P
2 = PTHP , !18"

where H,H!Y)Y" and P,!local1 , local2 , . . . , localY"T. A
regularizer value for any set of parameters can be calculated.
For this paper, the regularizer value for local parameters
P1!y", P2!y", P3!y", P4!y", k1!y", and !!y" was calculated
and summed into the total regularizer value for the model,
(M

2 .
In order to use the same LM minimizer used to fit the

three and four exponential fits, Igor’s built in curve fitting
operation was used to minimize the new cost function in Eq.
!5". This was accomplished by expanding the data and fit by
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one data point !a total of T)Y +1 points". By placing the
square root of '(M

2 in the last fit point and a zero in the last
data point, the fitting algorithm will add the squared differ-
ence to the residuals giving the proper cost function.

2. Active-set and interior point gradient

AS and IPG require as input a design matrix !Al", scaled
data !bl", and an initial guess for the solution xl. AS, IPG,
and locally regularized IPG fit each transient in a data set
individually. For TCSPC data simulations in this paper the
design matrix A has elements exp!−kjti". The design matrix
was convoluted column-by-column with an instrument re-
sponse function typical of microchannel plate photomultipli-
ers. The total number of grid points per local fit was set to
K=120. The grid was evenly spaced in k−1 from 0.1 to 12.0
ns. For globally regularized IPG, these local matrices were
organized as previously described in the methods for the glo-
bal case.

The IPG method requires a scaling term .! !0,1" The
scaling term is used when IPG attempts to take step into a
nonfeasible region of the parameter state space; . is used to
scale the maximum allowable step distance as to get close,
but not reach the non-negative boundary. We set .=0.9
which is 90% of the largest step. In the current data fits .
was set to 0.9 because it seemed to converge the fastest while
also avoiding local minima.

Convergence of the IPG algorithm was allowed a maxi-
mum of 106 iterations. Every 2000 iterations, &2 was evalu-
ated. If the fractional decrease from one evaluation &2 to the
next was less than 10−7, the fit was considered converged.
The high S:N limit data, I=108, required 107 iterations due
to the large condition number of the global design matrix.
Initial guesses were set to 10−32.

We chose the linear continuity condition for both local
regularization and for global regularization in Eqs. !6" and
!8", respectively. Adding the regularizer to the minimization
for IPG modifies the condition needed to maintain the pa-
rameters in the non-negative region. To maintain the
totally non-negative condition, regularized IPG requires
!ATA+'H"x/0, so ' is constrained by

' -
Hx

ATAx
. !19"

For all S:N, ' was set many orders of magnitude below this
maximum threshold.

3. Maximum entropy method fits

Maximum entropy fits were performed using a grid of
exponential rates and minimized by the Levenberg–
Marquardt method using the same convergence and con-
straint criteria as described earlier. Each transient was fit lo-
cally using the same design matrices, Al, as employed for the
AS and IPG methods

F!t,yl" = 1
i=1

T

1
j=1

K

Aijlxjl. !20"

Maximum entropy regularizer, 'W, was by calculated
using Eq. !7" and were implemented using Igor’s built in
curve fitting operation in similar fashion as the global regu-
larized model fits.

D. Model similarity criteria

Two perspectives can be taken to compare and contrast
the fitting methods presented in this paper. The first com-
pares the quality of fit and the second compares the quality
of parameters. A model is considered acceptable when the
quality-of-fit, &2, is below some statistical threshold. Mul-
tiple acceptable models !usually differing in model simplic-
ity" can be differentiated from each other via statistical test-
ing. However, many models will be statistically
indistinguishable based solely on quality of fit to the data,
even when &2 is evaluated globally across all Y transients,
frustrating the search for the “best” global model. The ulti-
mate goal is to get the set of parameters that best represents
the physics of the system assuming all candidate models give
adequate fits to the data. We use the Kullback–Leibler diver-
gence and species population deviation to evaluate the qual-
ity of the parameters as compared to the exemplar parameter
set.

1. Quality-of-fit

The sum of the weighted, squared residuals, &2, is nor-
mally reduced by the expected variance or value of &2 based
on normal statistics. However, because we have synthesized
data, we can directly compare the true F!t ,y" !i.e., noiseless
data" to the noisy data to determine the actual variance of the
data and reduce the fit &2 by this value

&r
2 =

&fit
2

&true
2 . !21"

&r
2 values are calculated for the entire data set. We consider

an adequate fit to be 1.1/&r
2/1.0. &r

2 with values above or
below this range underfitting or overfitting the data,
respectively.

The F test is used to calculate the probability-to-reject
the hypothesis that two fits are the same based on &r

2.17 Val-
ues close to 1 indicate the values of &r

2 are statistically dif-
ferent. For this paper, we use the F test for two different
purposes: To set convergence criteria and to compare the
statistical significance of different model fits. The conver-
gence criteria for IPG fits provided a probability-to-reject
,0.01 for all S:N when compared to the AS fits. The regu-
larizer strength, ', for local and globally regularized IPG fits
was chosen such that probability-to-reject ,0.01 when com-
pared to the AS fits. With very little regularization, we will
show that even though fits are not statistically different, the
underlying parameters distributions are. The F test was used
compare traditional global model fitting with regularized glo-
bal fitting, again choosing the regularization strength such
that probability-to-reject ,0.01. We also used the F test to
compare three exponential fit to the four exponential, tradi-
tional global, and regularized global fits.
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2. Quality-of-parameters

Kullback–Leibler divergence is an information theory
approach to quantify the difference between a “true” prob-
ability distribution and an arbitrary probability distribution
and represented by

DKL = 1
k

1
y

f!k,y"ln* f!k,y"

f̃!k,y"
+ . !22"

DKL is a measure of the relative entropy of the two distribu-
tions. Perfect overlap of a test set would result in a value of
DKL=0.

A common goal in fitting data is to determine the evolu-
tion of the populations of different species. Attribution of the
populations from gridded fits such as the AS and IPG meth-
ods described earlier is not trivial. Therefore, we define re-
gions of the grid that are attributed to each species. The
region for each species is summed for a given value of y to
determine the total population of that species. The evolution
of species i in a particular data set was defined as Si!y",

Si!y" = 1
k=ki,min

ki,max

f!k,y" , !23"

where ki,min and ki,max were set based on the features of the
exemplar parameter set. Specifically, k4,min

−1 =0.6 ns, k4,max
−1

=1.4 ns, k2,min
−1 =1.5 ns, k2,max

−1 =2.4 ns, k3,min
−1 =2.5 ns,

k3,max
−1 =3.5 ns, k1,min

−1 =5.0 ns, and k1,max
−1 =9.0 ns. The spe-

cies parameters are calculated for every S:N ratio, but we
will only explicitly compare Si’s for different fitting methods
at I=104.

An overall score for reproducing the populations over
the evolution dimension y was determined by the mean-
squared difference of the populations

POP = 1
i=1

4

!S̃i!y" − Si!y""2, !24"

where S̃i!y" is the population vectors calculated from the
exemplar model. This metric, along with the Kullback–
Leibler divergence, allowed us to score the overall perfor-
mance of different methods for all S:N ratios in their ability
to reproduce the underlying physics of the system.

E. Error estimates

Parameter errors in ill-posed problems are unbounded.17

This arises because many potentially very different param-
eter sets can fit the data equally well. However, for a particu-
lar fit one can estimate the errors in the parameters and the
degree to which they are coupled from diagonal and off di-
agonal elements of the covariance matrix, respectively. Tak-
ing the derivative of the Jacobian, Eq. !11", gives the Hessian
matrix. The matrix inverse of the Hessian matrix gives the
covariance matrix

C = !!ATA + 'H""−1. !25"

The square root of the diagonal elements of the covariance
matrix provides an estimate of the errors in the parameters.
Not all parameters will have a value of zero in the Jacobian

given by Eq. !11". This is a consequence of the constraint of
the parameters to be non-negative. These parameters are not
active and should not be included in error estimates. There-
fore, only parameters with values of the Jacobian that are
close to zero should be included in the Hessian matrix. In our
experience the covariance matrix gives large estimates for
the errors in these ill-posed problems because of the large
degree of anticorrelation between parameters.

III. RESULTS

In this section we examine the results of several ap-
proaches to fitting the data generated by the exemplar model
at different levels of photon counting noise.

A. Levenberg–Marquardt

A common method for multiexponential fitting of
TCSPC data is nonlinear least-squares optimization. This
method implies a weighted sum of delta functions at the
different values of the decay rates in Laplace space. The
number of delta functions is static which helps to stabilize
the inversion. Levenberg–Marquardt is one of the most com-
mon algorithms for accomplishing this. For the data sets gen-
erated by the exemplar model, less than three exponentials
did not give satisfactory fits.

1. Three-exponential model fits

Three exponential fitting was fast, robust, and relatively
insensitive to initial guesses with respect to convergence,
except for the high S:N limit !I=108" which converged
much more slowly. Only at this high S:N limit did a fit yield
a value of &r

2 that indicated that the fit failed to reproduce the
data !see Fig. 11".

Contour plots of the parameter values resulting from
three exponential LM fits appear in Fig. 2. The discrete func-
tions are unable to reproduce the width or evolution of spe-
cies 1 at any S:N. The conversion of species 2–3 is never
resolved. At high S:N !I$105" the conversion is represented
by a single species with a decay rate at approximately the
weighted average of the contributions of species 2 and 3.
Species 4 should not evolve in either intensity or position
and is only properly reproduced at high S:N !I$105".

The population evolutions for species 1–4 at a moderate
S:N, I=104, are compiled in Fig. 14. For this three exponen-
tial fit, S1!y", represented by brown circles, follows a similar
trend to that of the exemplar evolution !shown by the solid
line of the same color". S2!y" !green diamonds" is not
present, suggesting the need for another exponential term.
S3!y" !blue triangles" follows the correct increasing popula-
tion evolution trend over the experiment coordinate, but is
overestimated. S4!y" !red squares" decreases until it reaches
the true population, y=2, then flattens. The initial overesti-
mation of species 4 population evolution and total overesti-
mation of species 3 is a compensation for the inadequacy of
the three exponential model to describe species 2.

Quantitative measure of the similarity #see DKL and
population overlap parameter !POP" in Figs. 12 and 13, re-
spectively$ of the three exponential fit parameters and the
exemplar model show little improvement with increasing
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S:N, even at the high limit !I=108". This is a consequence of
the lack of flexibility in the model to represent the trends in
the exemplar model. In effect, the correct model was ex-
cluded prior to fitting. A normal next step would be to add an
additional exponential term to the model and compare the fits
to the three exponential results.

2. Four exponential model fits

Contour plots of the parameter values resulting from
four exponential LM fits appear in Fig. 3. For all S:N, the
resulting parameters were sensitive to initial guesses, even
though the &2 statistic was not. At the S:N limit !I=108",
convergence became extremely sensitive to the initial
guesses for the parameters. We note that this prompted our
use of similar initial guesses for each S:N ratio as described
in Sec. II. According to the F test, the &r

2 values were not
significantly different from those obtained for three exponen-
tial fits until high S:N !probability-to-reject for I-2)104

was ,0.01". Only the high S:N limit !I=108" gave a value
of &r

2 that indicated that the fit failed to reproduce the data
!see Fig. 11".

The four exponential model fails to reproduce the exem-
plar model as illustrated in Fig. 3. In the region of the dis-
tribution associated with species 1, the fit typically used two
of the four available exponentials. There was no systematic
trend in these components until high S:N !I$105", where
the pair of exponentials are split and increases in separation
over the nontransformed coordinate, y. Though this might
have been hailed as a success, there is little to distinguish
this pattern from that generated in the species 2, 3, and 4
region. Here species 4 is resolved and the exchange of spe-
cies 2 and 3 is again reduced to a single exponential at the
weighted mean.

These trends can be more clearly seen when we consider
the species population evolutions in Fig. 14. The S1!y" de-
creases and diverges from the exemplar at y=6 as the one of
the two exponential rates, attempting to shape the edges of
this distribution, overshifted to about k−1=4.5 ns. There was
an abrupt exchange of population between S2!y" and S3!y" at
y=6 as the single exponential component shifts to longer
lifetime. Finally, S4!y" evolved by first decreasing !y-5"
then, after a sharp increase, decreased again !y/6".

The overall POP was overall better than the three expo-
nential fits and gradually, if inconsistently, trended toward

FIG. 2. !Color" f!k ,y" for three exponential fits. Starting from the top panel
down: Exemplar solution parameters, fit solution parameters synthesized
with I=105, 104, 103, and 200 peak mean photons. Superimposed numbers
correspond to species described in Sec. II.

FIG. 3. !Color" f!k ,y" for four exponential fits. Panels are described in
Fig. 2.

114114-8 J. T. Giurleo and D. S. Talaga J. Chem. Phys. 128, 114114 "2008!

Downloaded 11 Jun 2008 to 128.6.78.31. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



improvement with increasing S:N. The Kullback–Liebler di-
vergence also improved slightly with increasing S:N. Ap-
proaching the high S:N limit there was no further improve-
ment in POP or in DKL. Interestingly, &r

2 greatly deviated
from one but was two orders of magnitude smaller than three
exponential &r

2 at the same high S:N limit.
At low S:N the fits are of such poor stability that the

addition of another exponential makes it even more difficult
to identify a trend in the fits, most likely because of the
necessary trade-off between representing the different num-
bers of species and widths at the early versus late stages of
the evolution across y. For example, in the first few tran-
sients, three species were being represented by four exponen-
tials. Later there were four species active, but one of them
required a width that needs at least a fifth exponential to
represent it. All this would suggest that an adaptive method
!such as the active-set method" that could change the number
of exponential contributions as needed might provide better
fits and better reconstruction of the exemplar model.

B. Active-set

Contour plots of the parameter values resulting from
active-set method fits appear in Fig. 4. The active-set method

converged substantially slower than the three and four expo-
nential LM fits. This difference became more pronounced
with increasing S:N. The &r

2 steadily decreases with increas-
ing S:N.

At low S:N, the fits are unstable and correct trends are
difficult to ascertain. Species 1 is represented by two or three
components, but no systematic trend appears. Likewise spe-
cies 2, 3, and 4 are represented by three or four components,
but are not resolved until the high S:N limit !I=108 param-
eters not shown".

As can be seen in Fig. 4, the active-set method typically
selects four to eight exponential contributions for a given
position along the nontransformed !y" coordinate. However,
as can be seen in Fig. 11 this has not translated into a sub-
stantially better match with the exemplar; it is not only dif-
ficult to ascertain a trend for species 2, 3, or 4 at any S:N, but
there is little evidence of distribution of rates for species 1.

The lack of any discernible trend has translated into er-
ratic behavior of the species evolutions in Fig. 14. Again,
S1!y" slowly deviates from the exemplar as the width of the
distribution of species 1 increases. Populations S2!y" and
S3!y" randomly exchange across the experimental coordinate
while S4!y" fluctuates about exemplar population values.

Though performed on a grid, the active-set method tends
to give discrete distributions. This is a consequence of the
algorithm used to expand and contract the basis set. During
the search for the best fit the algorithm explores regions of
parameter space that include negative populations. To correct
this, these negative values are pruned from the active set of
basis functions. It is usually the closely related basis func-
tions that get pruned. This results in the suppression of solu-
tions with continuous distributions. This tends to make the
active-set method not fit distributions as well as one might
expect given that the distribution is explicitly allowed by
virtue of the procedure being performed on a grid.

C. Maximum entropy method

A commonly used method to improve the stability of
multiexponential and distribution-of-exponentials fitting is to
regularize using maximum entropy !MEM". The parameter
values of the resulting fits are shown in Fig. 5. The MEM
converged substantially slower than the active-set fits. Good
fits were only obtainable when the regularizer parameter was
increased to a value consistent with a tenfold higher
probability-to-reject the regularized solution as compared to
the typical IPG regularized fits !vide infra". The &r

2 steadily
decreases with increasing S:N and displayed a consistent
trend with AS fits even at the highest S:N.

At low S:N !I=2)102", none of the species is resolv-
able. At modest S:N !I=103" the distribution of species 1 is
apparent and is the first example in this paper of fitting
method depicting a distribution. Though species 1 distribu-
tion becomes better defined as high S:N, species 2, 3, or 4
are still undecipherable. Only in the high S:N limit !I
-108" are all the species resolvable.

Kullback–Liebler divergence and the POP systematically
improves with increasing S:N. At the !unrealistically" high
S:N limit, these parameters are extremely good.

FIG. 4. !Color" f!k ,y" for active-set method fits. Panels are described in
Fig. 2.
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D. Interior point gradient method

The interior point gradient method improves the grid-
based solution by performing the fit search in such a way that
physically forbidden !negative population" values of the pa-
rameters are never accessed. Execution time of the algorithm
was substantially faster than that of the active-set method,
but slower than LM. Adding local regularization to IPG in-
creased the average iteration time by less than 10%. Globally
regularized IPG was the slowest to converge because this
method fits all the data simultaneously. For all reasonable
values of S:N !I-105" the resulting &r

2 were consistent with
a good fit as seen in Fig. 11.

1. Unregularized IPG

Contour plots of the parameter values resulting from un-
regularized IPG fits appear in Fig. 6. The IPG fits do a better
job reproducing distributions, such as that of species 1. Even
at modest S:N !I$103" the distribution of species 1 is well
defined, though the proper evolution of its width is not re-
solved except for high S:N !I$105". The contributions of
species 2, 3, or 4 are unstable at low S:N.

At high S:N !I=105" species 4 is resolved from species
2 and 3. However, the conversion of species 2 to 3 is a

shifting distribution rather than separate exchanging distribu-
tions. Only at the high S:N limit !I=108 parameters not
shown" does the unregularized IPG method reproduce the
contributions from all four species and their evolution with y.

Even though population distributions are being repro-
duced, the species populations for the IPG method evolve
erratically over the experiment coordinate. S1!y" decreases
with y, but the deviation from the exemplar, S̃1, is less than
seen in AS. S2!y" and S3!y" readily exchange population.
S4!y" is far from constant evolution across y.

Kullback–Liebler divergence systematically improves
with increasing S:N. The overall population parameter, POP,
also improves with increasing S:N. Fitting data with high
S:N, I$2)104, there is a big improvement in POP. Com-
paring parameters in Fig. 6 with moderately high to high
S:N, i.e., I=104 to I=105, IPG gains the ability to separate
species 2 from species 3, albeit, with minimal, success. To
improve the IPG’s inability to accurately reproduce param-
eters at low S:N, a regularizer may be used to stabilize the
fitting procedure.

2. Locally regularized IPG

The effect of the local regularizer on the fits can be seen
in Fig. 7 as effectively broadening the distributions as com-

FIG. 5. !Color" f!k ,y" for MEM fits. Panels are described in Fig. 2. FIG. 6. !Color" f!k ,y" for IPG fits. Panels are described in Fig. 2.
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pared to unregularized IPG. The imposition of the continuity
condition in the transformed dimension k has essentially
given very similar solutions to that of the unmodified IPG
except that the distributions have broadened beyond the ex-
emplar widths. At very low S:N, the correct trend is impos-
sible to ascertain in any reasonable way. Fitting moderate
S:N data !I=104", the distribution of species 1 is resolved
but does not correctly evolve in width. Concurrently, species
2, 3, and 4 are merged into an undecipherable single species.
At high S:N !I=105", species 1 is resolved with a similar
width evolution as the exemplar. However, for y,4 species
2, 3, and 4 are merged making it difficult to establish initial
species. Even at this S:N, species 1 has been overestimated
in width.

The species populations for locally regularized IPG were
far more stable than the AS or unregularized IPG. S1!y" de-
creased away from the exemplar population after y=6. Even
though the distributions of species 2 and 3 were unresolved,
the evolution of S2!y" and S3!y" indicated that the correct
populations were beginning to be recovered, though they
were still unstable. There was an apparent trend of decrease

in population of species 2 and a simultaneous increase in
species 3. S4!y" was well behaved about its correct exemplar
value.

Though the qualitative trends comparing the locally
regularized IPG fit parameters to the exemplar model sug-
gested worse fits, the Kullback–Liebler divergence was
smaller than the unregularized case. This is a result of
broader distributions being more forgiving in terms of over-
lap with the exemplar model. Even the population is slightly
better reproduced in the locally regularized IPG fits. Similar
to the unregularized case there is a big improvement in this
metric occurring at low S:N, I=2)103 to I=104. As seen in
Fig. 7, species 1 becomes better defined at higher S:N, as
well as separating species 3 from species 1 for y$7.

Overall, the regularization of IPG stabilized the solution
set and may allow the investigator to establish trends at high
S:N. Though the evolution of species populations showed
reasonable overlap with the exemplar in Fig. 14, it is un-
likely that local regularization would lead the investigator to
correctly identify the number and properties of species
present.

3. Globally regularized IPG

The globally regularized IPG method was far superior
for reproducing the exemplar model. Even at level of S:N
appropriate for a single molecule measurement, !I=2
)102", the fit demonstrates that the long lifetime species was
a broad distribution whereas the short lifetime components
were narrower. Species 1 broadens with y. The presence and
conversion of species 2 and 3 were beginning to be resolved.
At modest S:N !I=103", species 2 and 3 were clearly two
separate populations converting from one to the other, adja-
cent to a third constant species 4. The mean of the population
distribution of species 1 was about 7 ns, increasing in width
along the experimental coordinate.

The species population evolution was quite similar to
that of the exemplar. Species populations S2!y" and S3!y"
both slowly exchanged populations without affecting S4!y".
Notice that populations followed a more linear trend than the
exemplar populations for species 2 and 3. This was due to
the linear nature of the regularization condition applied in the
fitting algorithm.

The quality-of-fit improved systematically with increas-
ing S:N. The quality-of-parameters also became increasing
better with S:N. POP decreases abruptly between I=102 and
I=2)102, then again between I=5)103 and I=104.
Though the globally regularized IPG method reproduced a
distribution for species 1, at the lowest S:N there was an
inability to distinguish between species 2, 3, and 4 !data not
shown". At a slightly higher S:N, this was no longer a prob-
lem. When comparing a moderate to a high S:N, not only
were species 2 and 3 better separated, their populations more
closely matched the exemplar. This represented the second
drop in POP. The Kullback–Liebler divergence also steadily
decreased with increasing S:N. Fits for data with low to
modest S:N, I=5)102 to I=103, also showed a drop in the
divergence parameter. This small increase in S:N allowed the
globally regularized IPG method to clearly define all species
and populations.

FIG. 7. !Color" f!k ,y" for locally regularized IPG fits. Panels are described
in Fig. 2.
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The globally regularized IPG fitting procedure does a
great job reproducing the evolution of the exemplar model.
However, the exact evolution of the population of the species
present must be interpreted by extracting them from the grid-
ded fits. Moreover, there is no way of directly interpreting
the physics or chemistry implied by the evolution from these
fits. This is the consequence of the probabilistic constraints
as opposed to specifying a particular physical model. The
advantage is that since models were not eliminated a priori,
one can use the globally regularized IPG fits to determine an
appropriate physical model for traditional global fitting as
appears in the next subsection.

E. Global model LM

A global model puts deterministic constraints on the
model space in the transformed coordinate. We determined a
global fitting model using the distribution of rates from the
globally regularized IPG fit at I=104 in Fig. 8. From this fit,
it is clear that there are four species. Species 1 had a signifi-
cant width, that slightly evolved and was centered at k−1

=7 ns. Conventional global fitting might treat this as a
stretched exponential expression #second term in Eq. !17"$ in

order to model a distribution of rates. Both the stretch pa-
rameter, !!y". and the rate parameter, k1!y". must be local
parameters since !!y" changes not only the width of the dis-
tribution but also the mean.

The global fit also showed that species 2, 3, and 4 were
fairly narrow distributions thus represented by single expo-
nentials, each with global rates, k2, k3 and k4. Though the
populations of these species had fairly consistent trends !i.e.,
species 2 descended, 3 ascended, and 4 remained nearly a
constant in amplitude" the model was kept general enough to
allow variability in populations across the evolution, by em-
ploying local pre-exponential factors P2!y", P3!y", P4!y", re-
spectively. The fit model also contained a base line term,
F0!y", local for each data transient.

Part of the instability of nonlinear least-squares fitting of
multiexponential functions arises from the lack of constraints
on the exponential parameters. Even with the proper discrete
global model, the fit procedure must be constrained. If they
are left unconstrained, the exponential parameters can attain
the same values. When this occurs, singular matrix errors are
encountered by the LM algorithm causing the fit to fail. To
forbid the global rate parameters from combining, a problem
common with nonlinear multiexponential fitting, constraints
were used. Constraints were placed upon global parameters,
k2, k3, and k4, and they were chosen based on the trends in
the I=104 globally regularized fits.

1. Traditional global model LM

For all reasonable S:N levels !I-105", good fits were
obtained as determined from &r

2. In fact, there was no signifi-
cant statistical difference in quality-of-fit across nearly all
S:N levels I-5)104, comparing the three exponential
model and the stretched model !probability-to-reject -0.01".
At a high S:N limit, I=108, the &r

2 value increased suggest-
ing that the discretization of the model was beginning to
make a difference in the quality of the fit at that limit. For all
S:N, fits were robust but at low S:N, I-2)102, the global
rates were often limited by the constraint !not all data are
shown".

For the low S:N fits, the stretched exponential term was
not able to consistently reproduce the species 1 distribution.
The !!y" parameter converged to 1 in several cases resulting
in a discrete exponential for some values of y. Even though
species 1, 2, and 3 were centered at nearly the correct life-
time, the local amplitudes fluctuate greatly at low S:N. By a
moderate S:N level, I=104, the fits nicely reproduce the
width and evolution of the species 1 distribution. The insta-
bility of the ! parameter for the fit to species 1 appeared to
interfere with the fitting of the conversion of species 2 to 3,
which was not correctly reproduced until I=104. The
species 4 region was properly reproduced even at low S:N,
I=2)102.

As anticipated, the ability of the global model to repro-
duce the populations was excellent. The populations trends
appeared to be only slightly “noisy” across y. Moreover, the
POP metric shows global model thus far producing the best
overlap with each species population from I$5)102. Be-
cause all population for a particular species were determined
from subranges of the grid of k’s, the POP parameter was

FIG. 8. !Color" f!k ,y" for globally regularized IPG fits. Panels are described
in Fig. 2.
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less sensitive to the discrete nature of model used to describe
species 2, 3, and 4. The plateau in DKL divergence at I
2104 suggests that above this value the deterministic con-
straints on the transformed coordinate dimensions of the
model space limit the quality of overlap with the exemplar
model.

The local nature of the amplitude parameters allowed
them to fluctuate greatly along y, especially for a low to
modest S:N. A specific deterministic model along y related to
some physical theory could help stabilize this situation. We
note that since there was no improvement in Kullback–
Liebler divergence or POP for the high S:N limit !I=108",
we expect little gain in parameter stability at a moderately
high S:N !I/104" with a regularized model. Nonetheless, in
the spirit of first using probabilistic models, we attempted to
regularize the model fit along the y coordinate as a way to
use global information without a specific model.

2. Regularized global model LM

Regularization of the global LM fitting increased conver-
gence time by no more than a factor of 2 and increased the
stability of the fitting procedure. The values of &r

2 indicated
good fits across all reasonable values S:N and were not sta-
tistically different from the traditional global model fits as
measured by the F test !probability-to-reject ,0.05".

The addition of the regularizer stabilizes the distribution
due to species 1. This, in turn, stabilized the evolution of
species 2 and 3 since species 1 was no longer interfering
with them. Overall good fits were obtained at moderate S:N,
I$103.

The globally regularized model fit was a considerably
better method for reproducing the distribution of species 1 at
very low S:N. Species 1 had a clear distribution across the
experimental coordinate, but lacked an evolving trend in
width. Species 2, 3, and 4 had the correct population trends
but are close to the employed bounds. For data with I
$103, all species were well within the imposed bounds,
while showing an evolving width associated with species 1.
The ability of this method to resolve species 2, 3, and 4 did
not change much with increasing S:N I$103, while species
1 improved with better S:N.

The addition of the regularizer to an otherwise tradi-
tional global fit improved the ability of the fit to reproduce
systematic changes in species population evolution as seen in
Fig. 14. Specifically, the evolutions for the regularized global
model were noticeably smoother. As with the globally regu-
larized IPG fits, S2!y" and S3!y" were more linear than their
respective exemplar evolutions. The constant species, S4!y",
also did not have a consistent increasing trend, as it did for
the globally regularized IPG. Though S1!y" was slightly
overestimated, the population evolution was nearly constant.

The match with the exemplar model was limited because
of the discrete character of the model in the transformed
dimension as seen in the Kullback–Liebler divergence. How-
ever, when comparing the Kullback–Liebler divergence for
the regularized global model fits to the traditional global
model, the regularizer model reached a plateau sooner !I
=103 versus I=5)103". As seen in Figs. 9 and 10, the regu-
larized global model stabilized the evolving distribution of

species 1 with modest S:N, I=103. There was no improve-
ment in Kullback–Liebler divergence in the high S:N limit
!I=108".

The POP metric steadily decreased until a plateau was
reached for a moderate S:N, I=2)103. This indicated that
from a species population point-of-view, nothing else can be
gained from better S:N. This can be seen in the increase in
the POP value for fits to the highest S:N data !I=108",
thereby showing the addition of a regularizer is not necessary
for a discrete global model fit to virtually infinite S:N data.

IV. DISCUSSION

A. Comparison of methods

In the results we evaluated how the S:N ratio influenced
the success of each fitting method using &r

2, the Kullback–
Liebler divergence, and the population parameters. We now
compare the different methods to each other and discuss why
they gave different results.

1. Reduced chi-square

The four deterministically constrained models !all opti-
mized with LM" showed little systematic change in &r

2 until

FIG. 9. !Color" f!k ,y" for global model fits. Panels are described in Fig. 2.
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I$5)104, at which point &r
2 began to get worse. !See Fig.

11". By comparison, the gridded methods !optimized by AS,
MEM, or IPG" showed steady improvement in &r

2 until I
=105. There was no statistical difference of fit between the
AS fit and any of the MEM or IPG fits except in the high S:N
limit
!I=108". The MEM fits gave slightly higher &r

2 because of
the higher value of the regularizer strength parameter re-
quired to get reasonable fits. One interpretation of the higher
&r

2 for the gridded methods would be that they were done on
too coarse of a grid. However, the improvement in &r

2 with
increasing S:N suggests otherwise, since a constraint in the
model space would be reflected as a lower boundary for the
&r

2. Furthermore, improving the grid resolution did not
change &r

2. Grid methods have more model flexibility and
can take advantage of the increased S:N, however, the model
space they are performed in does not include terms that adapt
to the noise.

The global model fits were not statistically different than
the three exponential fits until they began to diverge in terms
of &r

2 at I/104 because they have less model flexibility than
three exponential and four exponential fits. According to &r

2

the three exponential model was adequate to describe the

data for these fits until high S:N. In the high S:N limit it was
quite clear that neither the three nor the four exponential fit
was a good model for the system.

2. Kullback–Liebler divergence

The Kullback–Liebler divergences comparing the exem-
plar parameters to the three exponential, four exponential,
AS, global model, and regularized global model fits did not
improve much with increasing signal-to-noise !see Fig. 12".
The deterministic constraints implied by these fitting meth-
ods forbid the true solution.

At low S:N !I=102" the methods were all clustered. In
this limit the AS method was worst and the three exponential
model was best. This suggests that too much model flexibil-
ity is not good when the there is little information in the data,
as the model flexibility will be used to fit noise. The MEM
and IPG methods did a better job than AS because they
tended to give continuous distributions that better repre-
sented the broad part of species 1 and were less able to adapt
to fit details of the noise.

With a modest increase in S:N !I=103" the IPG and
global models all showed a lower divergence from the exem-
plar model than did the three and four exponential, MEM,
and AS method. This was primarily a consequence of their
ability to represent the width of species 1. The MEM fits
continued to improve, however, not as quickly as the IPG
and global-model methods. The Kullback–Liebler diver-
gence for the three and four exponential and AS methods
reached a plateau here; they could not improve because the
model was fixed, and they could not take advantage of the

FIG. 10. !Color online" f!k ,y" for regularized global model fits. Panels are
described in Fig. 2.

FIG. 11. !Color online" &r
2 for all I using different fitting methods. !!"

Three exponential fits, !"" four exponential fits, !!" active-set method fits,
q maximum entropy method fits, !•" IPG fits, !#" locally regularized IPG
fits, !$" globally regularized IPG fits, !+" global model fits, and !%" regu-
larized global model fits.
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increased information available at higher S:N. Multiexpo-
nential fitting optimizes the exponential parameters after as-
suming the size of the solution space is drastically limited.
Multiexponential fitting never considers solutions of the
form that IPG uses to find a best fit. In the case of the AS
method, the fitting algorithm is such that it chooses multiple-
discrete representations of the distribution of species 1. AS
disfavors smooth distributions since they include more basis
functions and usually give negative values in the matrix fac-
torization step of the algorithm. The fundamental problem
with the AS method is that in its search it allows intermediate
solutions that have nonphysical negative amplitudes and de-
letes basis functions to prevent the negative amplitudes from
being realized, but in the process also eliminates possible
correct solutions. This tends to split smooth distributions into
multiple discrete components. As a result AS chooses what
could be considered a minimal entropy solution.

By I$2)103 all the IPG methods are better than the
global model fits. This is because the global model fits are
representing the narrow width of each of the species 2, 3, and
4 by discrete exponentials. This restriction on the model
space resulted in a limitation of how well it could reproduce
the exemplar model. Rather than adjusting the fit model to
include a width, as in the IPG methods, the differences be-
tween a discrete versus a narrow distribution were compen-
sated by minor adjustments of other parameters and do not
greatly affect &r

2.
Across the range of 103-I-105 the globally regular-

ized IPG fitting was superior to the other methods. This is
because the regularizer favors those solutions that are con-
tinuous in y, resulting in better overlap with the exemplar
parameters. IPG evolves the fit distribution within the full
solution space until the distribution reaches a best fit.

3. Population evolution

The POP parameter in Fig. 13 measures the overall abil-
ity of the fit to extract the evolution of the populations, while

the individual populations of the different species appear in
Fig. 14. The globally regularized IPG began improving at a
lower signal level than the other IPG methods, however, at
higher signal levels the other methods eventually caught up.
The MEM fits were comparable to the locally regularized fits
for low S:N but after I=2)103 the MEM was worse and did
not catch up until the higher accuracy of our MEM imple-
mentation became important in the high S:N limit !I=108".
The global regularizer could not do a perfect job tracking the
population evolution because it inherently measures devia-
tion from a linear dependence of the evolution in y. As a
result the evolution was “flatter” than it should have been as
shown in Fig. 14 right column, third row. Once it is known
that there are a certain number of species and that they are
evolving, the regularizer could be modified to allow more
curvature in the evolution by measuring departure from
piecewise quadratic behavior with a third derivative regular-
izer. However, at the level of reconstruction afforded by the
second-order global regularizer, one would be better served
forming a phenomenological model describing the evolution
and fitting to that global model to extract physical parameters
from the data.7 Prior knowledge in this case arises from the
formation of a physical hypothesis and allows the global
models to get a better solution. The traditional global model
and regularized global model illustrate this point as they both
did an excellent job reconstructing the populations and their
evolution.

B. Prior knowledge and probabilistic constraints

For all reasonable S:N levels, an investigator considering
the value of &r

2 and the F test would be led to choose the
three exponential model. If one also considered the details of
the experiment and used that prior knowledge in the fitting
procedure, one would obtain better results in terms of iden-
tification of the species present, their properties in terms of
the transformed coordinate, k, as well as evolution of their
populations across the nontransformed coordinate, y. Stabi-

FIG. 12. !Color online" Kullback–Liebler divergence for all I using different
fitting methods. Fitting methods are represented in the same markers as in
Fig. 11.

FIG. 13. !Color" POP for all I using different fitting methods. Fitting meth-
ods are represented in the same markers as in Fig. 11.
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lization by global fitting works because the model space is
being limited. To start with a deterministic global model
would be to start with an assumed answer and eliminate all
other regions of model space.

We saw how the addition of a regularization condition in
the transformed dimension, k, perturbs not only the narrow
distributions of species 2, 3, and 4 but also increases the
width of the broad distribution of species 1. The broadening
from the regularizer masked the evolution of the species 1
width. We see that the regularized IPG gave fits that were no
better and were in some ways worse than those given by
unregularized IPG. This is because the transformed-
coordinate regularizer is adding incorrect information to the
fitting procedure.

In the case of the three exponential, four exponential,
and AS fitting there was also incorrect information being
added to the fitting procedure. In the case of the three and
four exponential fits, the incorrect information was that the
distributions are discrete. This limits the solution space avail-

able for the fits to the point where no correct solution can be
found because the correct solution is not included in the
space of possible solutions. The space of possible solutions
for the AS method fits includes the correct solution, however,
the search space includes solutions that are not in the space
of possible solutions. The algorithmic mechanism used to
return the search from the forbidden space to the allowed
space is what biases the fit away from the correct solution. In
locally regularized IPG the local solutions are biased away
from solutions that include discrete or sharp features and
thus, though the available solution space includes the correct
solution, the regularizer puts an a priori bias against it be-
cause it includes narrow features. When viewed in this light,
it is understandable why regularization in the transformed
dimension is not a physically reasonable thing to do.

The global regularization worked well because there was
an evolution of the system across y. If there were no system-
atic trend with the independent variable then it would not be
sensible to regularize the data with the condition of piece-
wise linearity implied by Eq. !8". This method of global fit-
ting may also be applied to systems without a second inde-
pendent variable by using replicate measurements and a
regularizer that is appropriate for a nonevolving system

G!y" =% ( # f!k,y"
#y

)2

dy . !26"

This regularizer measures departure of f!k ,x" from a con-
stant in the y direction.

In systems that are strongly evolving the third derivative
regularizer can be useful as it measures piecewise deviation
from a parabola

G!y" =% ( #3f!k,y"
#y3 )2

dy . !27"

Other regularizers could be used as well, so long as they can
be placed into matrix form as in Eq. !12".

Though the different regularizers imply different prior
knowledge of the experimental design, they do not forbid
nonconforming solutions. They only favor conforming solu-
tions to the degree dictated by the strength of the regularizer
parameter, '. Since ' is restricted to be weaker than any
level that causes an increase in &r

2 that is significant as de-
termined by the F test, one can be assured that the fit ob-
tained is statistically indistinguishable from that of an un-
regularized fit. The prior knowledge of the experiment is
only biasing within the set of solutions that are statistically
the same.

C. Global fitting strategy

The goal of global analysis is to identify the species
present and characterize their evolution with the nontrans-
formed coordinate y. An additional benefit of global analysis
is that a given local solution, when fit globally, is actually
using information from all the decay curves and therefore
behaves as it if has a better S:N. The global analysis essen-
tially allows the amount of signal !information" for the entire
data set to be used for the global parameters. For local pa-
rameters the benefit is indirect, however, having more stable

FIG. 14. !Color" Species populations, Si, at I=104. Species 1–4 are repre-
sented by brown $, green !, blue !, and red ", respectively. The solid
lines of the same respective color, represent the exemplar species popula-
tions, S̃i.
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values for the global parameters results in more stability in
the local parameters as well. Global regularization allows
this to occur without requiring a specific model and without
enforcing a value on a global parameter. Even when a tradi-
tional global model is used a regularizer can allow partial
globalization of the nonglobal parameters. The nonglobal pa-
rameters are essentially free of the model. In the present
example the global model would have needed to be ex-
panded to include a specific functional form for the evolution
of the population parameters.

Figure 15 illustrates a fitting strategy that stepwise re-
duces the available model space according to the data and
prior knowledge. This allows fitting of the global data set
without sacrificing the range of the model space while still
allowing quantitative conclusions to be drawn. Initially one
should use prior knowledge to determine the range of valid k
for the inversion. Alternatively this could be done with a
traditional multiexponential LM fit or a large-grid AS fit.
Once the model space has been identified, one should use
prior knowledge of the experimental design to determine if
there should be some expectation of continuity or other regu-
larization condition in either or both of the coordinates k and
y. Once a probabilistically constrained model space is avail-
able, one can perform a global fit that includes all the model
space using the globally regularized IPG method. From the
globally regularized IPG fits one should identify the species
present and form a deterministically constrained global
model for the transformed !species" coordinate. A traditional
global model can then fit the data either with or without a

probabilistic constraint on the nontransformed !evolution"
coordinate. At this point a global model for both coordinates
should be apparent and further reduction based on a fully
deterministic physical model with a small number of param-
eters should be feasible.

V. CONCLUSIONS

Current physical measurements include complex sys-
tems that do not give simple homogeneous signals. Large
heterogeneous data sets measured over many conditions have
become the norm. Extracting physical information from such
data sets requires handling large model spaces in the fitting
procedure. Fitting with large numbers of basis functions such
as is done in this work has only recently become feasible.
The complexity of the global regularization method would
have been prohibitive given the computational facilities com-
monly available 10 years ago. Many of the assumptions for
approaches to and algorithms for data fitting and reduction
were shaped by technological limitations of 20 or more years
ago. Modern computers allow direct fitting of large data sets
and should be exploited to allow better insight into the pro-
cesses behind the data.
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