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Intervalence electron transfer spectra in mixed-valence molecules are frequently modeled by an interacting
pair of adiabatic potential energy surfaces. The presence or absence of a double minimum in the lower surface
is correlated with trapped or delocalized charges, respectively. The coordinate involved in this interpretation
is the asymmetric normal coordinate representing the nuclear motions taking the molecule from one extreme
to the other. In this paper, a model is developed involving both a symmetric and an asymmetric coordinate
on an equal footing. The time dependent theory of electronic spectroscopy is used to calculate both absorption
and resonance Raman spectra. The model uses physically meaningful interactions in the mixed-valence molecule
including the electronic coupling, vibrational coupling, vibrational force constants, and bond length changes
as a result of the electron transfer. The effect of these interactions on the relative intensities of symmetric and
asymmetric modes in both the absorption and resonance Raman spectra are examined. The quantitative
calculations are discussed in parallel with the physical meaning. The calculations show how the spectra can
smoothly go from domination by one type of mode to the other. The most important effects are caused by the
bond length changes, the electronic coupling, and the force constant changes.

1. Introduction

An intervalence absorption band is caused by a transition that
is present in molecules containing two redox centers with
different oxidation states. It is absent in molecules where the
two sites have the same oxidation state.1-10 A large number of
examples are known where the two sites are metal atoms
connected by a bridging ligand.11-17 A common representation
of the transition is shown in Figure 1. This trapped valence
picture emphasizes vibrational modes that interchange the
molecule from one limiting representation of the location of
the charge to the other.18-22 If the model system depicted above
is viewed as nonlinear triatomic molecule, the normal coordinate
that is depicted above would be called the asymmetric stretch
and the two forms shown at the left and right sides would
represent the two limiting extremes of the motion.

This paper is motivated by recent experimental results and
theoretical treatments on mixed valence compounds that dem-
onstrate the importance of the symmetric normal coordinate.
The necessity of including the symmetric mode is well
recognized.23-26 Recent experimental studies on the Creutz-
Taube ion indicate that symmetric bridging vibrations are
enhanced in the resonance Raman spectrum of the intervalence
band.27-31 Other observations involving pyrazine-bridged dimers
suggest that for valence localized molecules the symmetric
pyrazine stretch at 1580-1590 cm-1 is present in the IR
spectrum but that this band is not present in delocalized
systems.14,15,32 A new class of mixed-valence molecules was
proposed (named “class II-III”) that have properties associated
with both class I (localized) and class III (delocalized in the
Robin and Day nomenclature).1 Resonance Raman studies on
other mixed valence iron and ruthenium compounds containing
bridging ligands different from pyrazine showed that symmetric
modes are enhanced.16,17 The enhancement of the symmetric

mode was interpreted in terms of a three site bonding picture33-36

because the usual two-state model is based on motions along
only an asymmetric coordinate.18,19 These new studies empha-
size the need for a theoretical and interpretive picture that
includes both the localized/delocalized extremes and the sym-
metric and asymmetric normal modes on an equal footing. The
model should smoothly carry over from one limiting form to
the other.

The actual motions of large molecules that display inter-
valence electron-transfer spectra will be distributed over a
number of coordinates and will, in general, be much more com-
plicated.14-17,37,38Methods for calculating electronic39-45 and
resonance Raman46,47spectra involving coupled electronic states
and multiple vibrational modes have been developed. However,
in considering the symmetry aspects of this problem, the pseudo
triatomic picture in Figure 1 is quite useful. This view implicitly
assumes that the structure passes through a nuclear configuration
having equal bond lengths and that the appropriate point group
for discussing the normal coordinates isC2V. This symmetry
reveals a disquieting problem: a normal coordinate of motion
that is orthogonal to the asymmetric stretch must exist in which
both bond lengths are equal and elongate or contract equally
and simultaneously (the symmetric stretch.) But this description
of the symmetry of the motion is only valid if the equilibrium
internuclear bond lengths are equal, a situation that only occurs

Figure 1. Schematic representation of an intervalence transition
between trapped valence states. The coordinate system used in this paper
is shown at the left.
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as the molecule drawn above passes from one limiting form to
the other. Of course, the molecule could be interpreted as having
equal bond lengths in the ground state (the “delocalized”
structure), but then the importance of the asymmetric mode and
electron transfer is deemphasized. Contributions from both types
of modes are in general possible, and a model that places both
modes on an equal footing is required.

This paper explores a model in which both the symmetric
and asymmetric modes are treated equally such that there is a
smooth transition from one extreme to the other. The model
uses two individual “local” metal-ligand modes. The inter-
actions that couple the two local modes to produce the normal
coordinates are discussed to provide physical insight. We begin
with an overview of the two vibrational coordinate, two
electronic state diabatic model which we use to examine
simultaneously the factors that influence the relative contribu-
tions of the symmetric and asymmetric modes in an intervalence
electronic transition. We discuss the various mathematical
parameters in the model together with their physical meanings
and molecular properties. Following the introduction to the
model, we present in brief the procedure used to carry out the
calculations using the time-dependent theory of electronic
spectroscopy. Then in the next section we examine the influence
of the bonding changes and the coordinate dependence of the
diabatic coupling on the contribution of the symmetric and
asymmetric modes to theX polarized absorption and resonance
Raman spectra. The trends forZ polarization are identical. The
final section treats the parameters that are associated with local
and normal mode coupling. By exploring these parameters, we
determine their influences on the contribution of each mode to
the absorption and resonance Raman spectra.

2. The Model for Representing Mixed Valence Species

A. The Diabatic Potential Energy Surface Basis. In general
there is no unique way of representing an interacting pair of
electronic states.48,49However, the coordinate-displaced model
provides a simple and natural starting point for representing
the intervalence electron transfer.18,20,21,49Therefore we will
focus our attention on the coupled, trapped valence picture of
the diabatics.

The basic ideas of this paper are shown schematically in
Figure 2. Before we examine the details of the various forms
of coupling and their effects on the potential surfaces and the
spectra, we show in broad perspective the basis of the effects
that we calculate. In Figure 2, potential surfaces representing
the two valence localized forms are labeled A and B. For the
moment they are represented as circular wells. One diabatic
potential energy surface represents a single valence-localized
form of the molecule as shown in Figure 1; the other surface
represents the other trapped valence form. The presence of an
extra electron results in the two states having equal and opposite
distortions in one or more asymmetric coordinates. For simplic-
ity we focus on one of them, the metal-bridging ligand stretch
coordinate. The vertical axis represents the M-B coordinate
labeledQ and the horizontal axis represents the B-M coordinate
labeledR. Wave packet motion along each of these coordinates
represents the appropriate local bond stretching motion.

The intervalence electronic transition places the wave function
from one of the surfaces (multiplied by the transition dipole
moment) on the other surface. A vertical transition from one
state to the other corresponds to moving an electron from one
site (Mn) to the other (Mn+1) without a change in nuclear
position. The vertical transition places the wave packet on the
other surface far from its minimum and the wave packet will

evolve in time according to the time-dependent Schro¨dinger
equation. If the motion remains parallel to the line connecting
the minima of the two surfaces, the molecular motion is the
asymmetric stretch: i.e., one bond elongates while the other
contracts. Any motion that develops perpendicular to the line
connecting the minima (bisecting the axes) corresponds to the
symmetric stretch of the molecule.

Analyzing the forces and interactions in the molecule that
affect the direction of wave packet motion is one of the major
purposes of this paper. The diabatic potentials in Figure 2 at
first glance imply that the asymmetric stretching motion is
dominant because the vertical transition places the wave packet
on the circular well potential surface at a position where the
motion will be along the line connecting the minima. Indeed,
the cross section of the two-dimensional surfaces in our
schematic formed the basis of our initial application of time-
dependent theory to the intervalence absorption spectrum
problem, and also was the basis for most other calculations in
the literature.2,18-22,25,49-51 However, both electronic coupling
and vibrational mode coupling prevent the problem from being
separated into one-dimensional cross sections. Furthermore, as
we show later, symmetric motion of the wave packet can
dominate. In the following sections, we delve into the intricacies
of the intramolecular forces and interactions that modify the
simple schematic in Figure 2.

B. Effect of Different Force Constants.We now examine
in more detail the potential energy surface of a single trapped

Figure 2. An interacting pair of potentials that forms the basis in which
the calculations are carried out (see text). The upper left part illustrates
a cross section along the symmetric mode of the two-dimensional
diabatics. The upper right part illustrates a cross section along the
asymmetric mode. The bottom part is a contour plot of the same
potential with illustrations of the bond length distortions arising from
different electronic configurations.
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valence form of the molecule and then use the symmetry
properties of the molecule to derive the surface for the other
state. The molecule with equal M-B bond lengths (the
nonmixed valence form of the molecule shown in Figure 1) is
the reference configuration for the examination of mixed valence
states and defines the zero of the configurational coordinate.
Localizing an electron on one site will cause a distortion along
that coordinate because of bond-order changes and/or electro-
static effects. The bond length change is represented by the
parameter∆pot. The surface shown in Figures 2 and 3b
represents a longer bond alongR when the metal is reduced
(∆pot > 0).

Once the molecule is mixed valence, the force constants of
the two sites will usually be different. If the “extra” electron is
in a bonding orbital it will cause an increase in the force constant
k for the reduced site by the amountkc and a decrease in bond
length. Adding an electron into an antibonding orbital results
in a reduction in the force constantk by the amountkc and an
increase in bond length. The effect of the change in force
constant is to change the potential energy surface from circular
to elliptical as illustrated in Figure 3c. The slope of the potential
surface is decreased (weaker force constant) along theR local
coordinate and increased (strong force constant) along theQ
coordinate.

In general the localization of this extra electron can also cause
bond length and force constant changes on the other site that
will change the force constant and equilibrium nuclear position
of the other coordinate. However, because of interchange
symmetry, these changes merely represent a change in the
reference force constant and equilibrium position from the
nonmixed valence species and therefore will not affect the
calculation of mixed valence spectra.

C. Local Mode Coupling. The local coordinates on sitesQ
and R can interact via couplingkQR. If kQR is a constant
independent of coordinate then the interaction enters into the
potential energy as a term proportional toQR which causes a
rotation of the potential energy surface by 2φ ) arctan(kQR/(kQ

- kR)) ) arctan(kQR/(2kc). The effect of the coupling on the
rotation of the potential energy surface is demonstrated in Figure
3d for kQR > 0.

The rotation of the surface changes the relative contribution
of the local coordinate from each site to the diabatic normal
coordinates. The angleφ measures the degree to which the local
coordinates couple. The two diabatics, then, have opposite
definitions of the amount of each local coordinate that contrib-
utes to a given normal coordinate. A wave packet that would
be an eigenfunction on one uncoupled diabatic once transferred
via coupling to the other surface will find itself on a potential
that has undergone a rotation ofπ/2 - 2φ. The angle between
the major axes of the ellipses (coordinate of the lower frequency
mode or the reduced site for an electron in an antibonding

orbital) isπ/2 for no coupling. This limit is appropriate for the
case where the mode mixing between coordinates on each site
is small. As the angleφ is changed from-π/4 to π/4, the
“symmetric” and “asymmetric” modes swap order energetically
for the isolated diabatic potential. Whenφ ) -π/4, νasym >
νsym, and whenφ ) π/4, νsym > νasym. Whenφ ) 0 νsym )
νasym. The limit of φ ) (π/4 is appropriate for strongly coupled
local modes. In this case (φ ) (π/4) there is effectively no
rotation when the wave packet hops surfaces due to diabatic
electronic coupling.

If there are anharmonic effects, that is if the force parameters
fQ and fR depend on the coordinate, then terms which depend
onQ3 andR3 must be included. If the force constant representing
the interaction between local modes,fQR, depends on coordinate
then terms proportional toQ2RandQR2 must be included. These
parameters cause the surface to lose its ellipticity as illustrated
in Figure 3e. We will suppress the cubic and higher order terms
for the remainder of this study though their inclusion does not
increase computational effort.

There is a symmetry relationship between the two potentials
due to the equivalence of the two interchangeable sites. As a
result the sign of the coefficients depends on the function of
the coordinates they precede. The symmetry relationships
between the parameters of the two sites are summarized in Table
1.

D. Diabatic Coupling. The diabatic couplingVAB is the most
important part of the Hamiltonian in governing the rate at which
the electron is transferred from one site to the other. The
electronic coupling results in a break-down of the Born-
Oppenheimer separablility of the electronic and nuclear wave
functions. The concept of potential surfaces (diabatic and
adiabatic) is no longer applicable. Diabatic coupling allows the
electron to hop from one state to the other and is a measure of
the strength of interaction between the two sites. Large couplings
correspond to large interactions that result in strong mixing of
the orbitals on each site. The result is delocalized behavior.
Weak couplings correspond to localized behavior. Two param-
eters,ε and∆coup, together determineVAB and its influence on
the spectra. The parameterε measures the strength of the
coupling at the origin of the coordinate system and serves as a
measure of the overall coupling strength in the system. The
electronic coupling will also, in general, be coordinate depend-

Figure 3. Illustrations of the effects of the coupling terms on the potential energy surfaces. (A) The basic two-dimensional undisplaced harmonic
oscillator wells with equivalent force constants. (B) Displacement by∆pot of the basic circular wells in the asymmetric direction. (C) The effect of
coupling kc between the local coordinates on the shape of the potential. The surfaces become elliptical. (D) The effect of rotation byφ on the
potential. (E) The effect of anharmonic mode coupling terms on the shape of the potential.

TABLE 1: Symmetry Relationships that Determine the
Signs of Molecular Parameters for the Two States by
Functional Form of the Potential Energy

function coeff. sign

Q2 + R2 same
Q2 - R2 opposite
Q + R same
Q - R opposite
QR same
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ent. As the molecule vibrates and the sites come closer together
the coupling will increase and vice versa. We account for this
behavior by using a coupling that is linear in the symmetric
coordinate. The parameter∆coup measures the degree to which
the diabatic coupling depends on symmetric nuclear displace-
ment.

E. The Model Hamiltonian. The final coupled potential
energy operator is

In the 2 × 2 matrixes, each diagonal element operates on
the nuclear part of the wave function from a single diabatic
electronic state whereas the off-diagonal elements transfer
population from one state to the other.

3. Analysis of the Contributions of the Symmetric and
Asymmetric Modes to Electronic and Resonance Raman
Spectra

A. Overview and Scope of the Calculations.The model is
designed to incorporate a small number of physically intuitive
and calculationally tractable parameters. The five parameters
that affect the observed spectra arek, ∆pot, ε, ∆coup, kc, andφ.
A listing of the parameters, their physical meanings, and their
effects on the intensities of the symmetric and asymmetric
modes in the spectra is given in Table 2. In this paper,k )
1.02 105 cm-1/Å2 and the mass) 17, such that the vibrational
frequency in the diabatic potential surface is 450 cm-1. The
values ofkc are chosen such that the resulting frequencies change
by the stated number of wavenumbers, i.e.,kc ) 25 cm-1 means
that the resulting vibrational frequencies are 425 and 475 cm-1.

The physical insight into the relative importance of the
symmetric and asymmetric modes is obtained by interpreting
thedirectionof the motion of the wave packet on the surfaces
in Figure 2. For example, in Figure 2 (bottom) the initial wave
function is found in the minima of the circular potential surfaces.
When it is promoted to a high energy part of the other circular
potential, the motion will be along the line connecting the
minima of the potentials. This line defines the asymmetric

vibrational mode. No motion develops in the perpendicular
direction (the symmetric mode) and the absorption and reso-
nance Raman spectra will only contain intensity from the
asymmetric mode. The couplings that exist in the molecule (both
vibrational and electronic coupling) can cause motion to develop
in the direction of the symmetric stretch. These effects are
developed in detail in the following sections. The following
discussion is based on exact calculations for the non Born-
Oppenheimer system: we will show how the spectra can
smoothly go from symmetric to asymmetric domination as the
couplings change.

The usual expectation in resonance Raman and absorption
spectra is that the symmetric modes will dominate. However
for the simplified picture of intervalence transitions shown in
Figure 1 the symmetric mode is not considered. Our model starts
with two (uncoupled) local modes (neither symmetric nor
antisymmetric). The parameters that control the interaction of
the local coordinates to produce the normal coordinates are
defined in Table 2 and illustrated in Figure 3. To develop
physical insight into how the various couplings affect the motion
along the coordinates and hence the symmetric and asymmetric
contributions to the spectra, the discussion will emphasize the
direction of the wave packet motion.

B. Methodology. InterValence Absorption Spectra.The
equation to calculate the frequency domain spectra from time
dependent quantum mechanics is52-55

There are three important quantities in this equation. The first
is the initial wave functionΦ, the lowest energy eigenfunction
of the coupled system. For intervalence transitions involving
two coupled diabatic potentials, each eigenfunction att ) 0 is
an array with two components corresponding to the two diabatic
potentials that form the basis in all of the calculations.20,49,56,57

The second important quantity is the electronic transition dipole
moment operatorµ: this function operates on both components
of the coupled system and promotes the wave packet to the
“excited state.” The specific functional form of the electronic
transition dipole moment operator depends on the symmetry of
the molecule involved and the polarization of the light with
respect to the molecule. Details of the treatment of the
polarization of light and the symmetry considerations have been
published.20,49,58For the axis system defined in Figure 1, theZ
polarization requires an even dipole function whereas theX
polarization requires an odd dipole function. The final important
quantity is the time evolving correlation function which is
calculated using a split operator fast Fourier transform
algorithm.59-62 For two coupled diabatic potential surfaces, the
wave packet is a vector quantity with a component for each of
the electronic states and is a function of the configurational
coordinate Q. As a result, two wave packets moving on the
two coupled diabatic potential surfaces are needed.

InterValence resonance RamanResonance Raman excitation
profiles are calculated in a manner similar to that for absorption
spectra. The Raman polarization tensor as a function of

TABLE 2: Summary of Parameters Used in Model Hamiltonian of Intervalence Electron Transfer in Two Coordinates

parameter typical values description effect

ε 1400 cm-1 constant coupling between states large values delocalize the electron
k 1.02× 105 cm-1/Å2

(frequency) 450 cm-1)
force constant giving rise to the stated vibrational

frequency (mass) 17)
changes spacing of vibrational progression

kc 0, 25, 50, 100 cm-1 coupling between local coordinates increases contribution of symmetric coordinate
φ 0, 15, 30, 45° rotation angle of diabatic surfaces reduces effect ofkc
∆pot 0, 0.03, 0.06, 0.12, 0.18 Å bond length distortions in asymmetric coordinate increases contribution of asymmetric coordinate
∆coup 0, 0.03, 0.06, 0.12, 0.18 Å dependence of coupling onthe symmetric coordinate increases contribution of symmetric coordinate

V̂ ) |VA VAB

VBA VB
|

VA ) 1
2
k(Q2 + R2) + 1

2
kc cos(2φ)(Q2 - R2) +

kc sin(2φ)(QR) + 1
2
∆potkc cos(2φ)(Q + R) +

1
2
∆pot(k - kc sin(2φ))(Q - R)

VB ) 1
2
k(Q2 + R2) - 1

2
kc cos(2φ)(Q2 - R2) +

kc sin(2φ)(QR) + 1
2
∆potkc cos(2φ)(Q + R) -

1
2
∆pot(k - kc sin(2φ))(Q - R)

VAB ) VBA ) ε - 1
2
(∆coup(k - kc sin(2φ)))(Q + R) (1)

I(ω) ∝ ω∫-∞

∞
eiωt〈Φµ|µΦ(t)〉dt (2)
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excitation wavelength is given by63-67

Again, both the propagating wave packet and the dipole moment
are important factors. In this case, the dipole “up” is the
orientation of the incident light whereas the dipole “down” is
the orientation of the scattered light. These dipole functions are
the same for the spherical Raman tensor elementsxx, zz, but
are different for the Raman tensor elements which give
depolarized scattering (xz, zx). The resonance Raman excitation
profile is the intensity of the Raman scattering of a single
vibrational mode as a function of excitation wavelength.
Typically the resonance Raman excitation profiles will follow
the profile of the absorption spectrum with the intensity of the
profile being proportional (to first approximation) to the slope
of the excited potential in the Condon region. However, the
asymmetric bands violate our usual intuition regarding resonance
Raman spectra.

C. Analysis of the Effects of Bond Length Changes and
Electronic Coupling on the Intensities of the Modes in
Absorption and Resonance Raman Spectra.The parameters
that have the largest effect on the presence or absence of the
symmetric and asymmetric modes are∆pot, ∆coup, and ε. An
increase in∆pot results in an increase in the presence of the
asymmetric mode in the spectrum. This increase is expected
because an increase in∆pot causes the surfaces to become
displaced further in the asymmetric direction which results in
increased motion along the asymmetric coordinate.

The effect of∆pot, however, is modulated by the electronic
coupling; an increase in the coupling will decrease the effective
∆pot. This change occurs because the increase in the coupling
increases the delocalization of the system and the nuclei have
an increasing share of their probability centered at the origin of
the coordinate. Thus, even though the local orbitals involved
in the transition may have large changes in the bonding for the
modes of interest, strong electronic coupling will “wash out”
the nuclear position over the values for both electronic states,
effectively reducing the distortion along the asymmetric coor-
dinate and preventing motion of the wave packet from develop-
ing in the asymmetric coordinate. The result is that the width
of the absorption spectrum will decrease asε increases due to
this reduction in the effective∆pot.

The symmetric mode intensity increases with increasing∆coup.
This parameter is a measure of the change in coupling as the
molecule vibrates along the symmetric coordinate. As the sites
are brought close together, the coupling increases. As the sites
move apart, the coupling decreases. As∆coupis increased relative
to ∆pot, the symmetric mode becomes increasingly important
as shown in Figure 4. The top (Figure 4A) and bottom (Figure
4G) parts show the corresponding 1d calculations for the
symmetric and asymmetric modes, respectively. These 1d
calculations were performed on cuts through the origin along
the symmetric and asymmetric coordinates. The absorption
spectrum shows an increase in the presence of the symmetric
mode with an increase in∆coup. Note that the spectrum is very
sensitive to small increases in∆coup (e.g., from part F to E of
Figure 4 and from part E to D of Figure 4) because wave packet
motion increases significantly in the symmetric direction as is
discussed more fully in the final paragraph of this section.) In
the limit of large∆pot:∆coup the spectrum is well modeled by a
1d asymmetric mode calculation. In the limit of small∆pot:∆coup

the spectrum is well modeled by a 1d symmetric calculation.
The resonance Raman spectra follow this behavior; they show

increased scattering intensity for the symmetric mode with an

increase in∆coup. The resonance Raman excitation profiles for
three illustrative cases are shown in Figure 5. (Note that these
are the scattering cross sections that would be obtained after
the absorption kernel from the other displaced modes has been
deconvoluted from the excitation profile.) The resonance Raman
spectra calculated for excitation near the absorption band
maximum are shown in Figure 6 for the same ratios of∆pot:
∆coup as those in Figure 5.

The resonance Raman excitation profiles provide an experi-
mental method of determining the relative importance of the
coupling term. The wavelength dependences of the profiles
shown in Figure 5 illustrate this point. When the contribution
of the ∆coup term is negligible (Figure 5, bottom), the profiles
for the symmetric and antisymmetric modes are “nested” and
the ratio of the intensities is uniform across the band. The
asymmetric mode is the most intense (contrary to the usual
expectation of resonantly enhanced modes). In contrast, when
∆coup is significant, the ratio becomes a strong function of the
excitation wavelength. An intermediate case is shown in Figure
5 (middle). The maxima of the symmetric and asymmetric
profiles do not coincide and the ratio of the intensities changes
across the profiles. When the coupling is even larger (in the
direction of increasing valence delocalization), the symmetric
mode becomes the most intense and the maxima in the excitation
profiles are strongly shifted relative to each other.

A more intuitive physical basis for understanding why the
coordinate dependence of the coupling causes an increase in
the presence of the symmetric mode is available by unitary
transformation of the diabatic basis. We showed previously that
a unitary transformation takes us from the localized diabatic
picture that we have discussed here to a delocalized picture

I(ωex) ∝ ωex(ωex - ωj)
3∫0

∞
eiωext〈Φωj

|Φ(t)〉dt (3)

Figure 4. Absorption spectra generated for various ratios of∆pot and
∆coup as labeled in the figure. In each case the larger of∆pot and∆coup

is 0.15 Å. Trace A is a one-dimensional harmonic oscillator calculation
for a displacement in the symmetric direction equivalent to that implied
by the value of∆coup) 0.15 Å. Trace G is the one-dimensional coupled
calculation of the absorption spectrum using the asymmetric mode and
neglecting the contribution of the symmetric mode. The values of the
other parameters arek ) 1.02× 105 cm-1/Å2 (frequency) 450 cm-1),
m ) 17 amu,ε ) 1400 cm-1, andφ ) 0°. The value ofkc ) 50 cm-1

for B- F and zero for A and G. For A-C the value of∆coup ) 0.15
Å with ∆pot given by the ratio, and for D-F the value of∆pot ) 0.15
Å with ∆coup given by the ratio.
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where the∆pot parameter no longer measures a distortion, but
measures the strength of the diabatic electronic coupling.49 By
analogy, the reverse transformation from the delocalized picture
to the localized picture results in the distortion along the
symmetric coordinate becoming the slope of the coupling with
respect to the symmetric coordinate in the localized picture.
Similarly, unitary transformation to the adiabatic representation
results in displacements of the surfaces along the symmetric
coordinate by(∆coup. Therefore,∆coup measures an effective
coordinate displacement in the symmetric coordinate and serves
also to measure the coordinate dependence of the coupling

between the two sites as the molecule is stretched along the
symmetric combination of local coordinates.

D. Effects of the Nonequivalence of Local Coordinate
Force Constants.The next parameter that is examined iskc,
the difference between the force constants of the local coordinate
on the oxidized site and the local coordinate on reduced site.
For large values of this parameter the wave packet experiences
a large change in local force constant as the electron moves
from one site to the other (that is, as the wave packet moves
from one surface to the other). As a simple example, when the
wave packet is placed on the opposite potential surface in Figure
3c, the motion is no longer purely in a straight line toward the
minimum along the asymmetric coordinate, but also develops
motion along the symmetric coordinate. Thus, the intensity of
features from the symmetric coordinate will increase as the
surfaces become more elliptical with increasingkc,.

The absorption spectra generated by varyingkc such that the
changes in the vibrational frequencies are 25, 50 and 100 cm-1

are shown in Figure 7. This figure demonstrates the increase in
the contribution of the symmetric coordinate. TheV ) (0,2)
and V ) (1,2) bands are marked with an “A” and an “S”
respectively in the spectra. As the contribution of the symmetric
mode increases the intensity of S will increase with respect to
A.

Resonance Raman excitation profiles provide a more sensitive
measure of the relative contribution of each mode. An unstruc-
tured absorption spectrum is rather insensitive to thekc

parameter; the overall width of the spectrum is only slightly
affected. The resonance Raman spectra generated by varying
kc such that the changes in the vibrational frequencies are 25,
50, and 100 cm-1 are shown in Figure 8. Whenkc ) 0 the
asymmetric band is the most intense and the symmetric band
is not observed. Askc increases, the symmetric band grows in
(ca. 500 cm-1 in Figure 8).

The coupling parameterε modulates the effect ofkc because
it reduces the localization of the system. When the system is
delocalized, the lowest energy eigenfunction has most of its
probability amplitude near the crossing region and therefore has

Figure 5. Resonance Raman cross sections calculated for ratios of
∆pot and ∆coup of 1:2 (top), 1:1 (middle), and 1:0 (bottom). The
corresponding absorption spectra are shown in Figure 4C, 4D and 4F,
respectively. The solid line is the profile for the asymmetric mode and
the dashed line is that for the symmetric mode. Note that the positions
of the maxima of the profiles are shifted relative to each other when
∆coup is large. The values of the other parameters are the same as those
in Figure 4C-F.

Figure 6. Resonance Raman spectra calculated for the ratios of∆pot

and ∆coup that were used in Figure 5. The excitation wavenumber is
that corresponding to the absorption band maxima in Figure 4C,D, and
4F, respectively. The values of the other parameters arek ) 1.02 ×
105 cm-1/Å2 (frequency) 450 cm-1), m ) 17 amu,ε ) 1400 cm-1,
andφ ) 0°.

Figure 7. Effect of the coupling on the absorption spectrum.
Absorption spectra are calculated usingkc ) 0, 25, 50, and 100 cm-1

as labeled in the figure. The ratio of the asymmetric (A) (2,0) to the
symmetric (S) (2,1) band is given at the left of each spectrum and
illustrates the increasing contribution of the symmetric mode with
increasingkc. The values of the other parameters arek ) 1.02× 105

cm-1/Å2 (frequency) 450 cm-1), m ) 17 amu,ε ) 1400 cm-1, and
φ ) 0°.
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a more averaged local force constant. For the value ofε that
we use for this comparison (1400 cm-1), the system is
intermediate between localized and delocalized. Therefore there
is significant probability amplitude both in and away from the
crossing region.

E. Effect of the Nonequivalence of Normal Coordinate
Force Constants.The last parameter we will examine isφ, the
rotation of the diabatic surfaces. As the surfaces rotate, the
relative contributions of the symmetry coordinates to the normal
coordinates for a given diabatic change. If there is no difference
in force constant the rotation of the diabatic has no effect. For
kc causing a change in the vibrational frequency of 50 cm-1,
we examine the effect of changingφ from 0 to π/4 (φ ) 0°,
15°, 30°, and 45°.) Because this parameter reduces the local
effective force constant change that the nuclei experience when
the electron changes sites, the amount of symmetric coordinate
contribution (absorption) and enhancement (resonance Raman)
will decrease asφ increases from 0 toπ/4. This decrease is
observed in the absorption spectra in Figure 9. In Figure 10 the
resonance Raman scattering excitation profiles exhibit a similar
trend.

Effects of the Interaction of kc andφ. The parameterkc is a
measure of the difference between the force constants. In effect
it is the measure of the amount of change in bonding interaction
that occurs on one site when the electron is removed from the
orbital in question. Thus it is also a measure of the degree to
which the electron transfer is coupled to the motion of the nuclei.
As was discussed earlier, an increase in this parameter increases
the local mode behavior of each electronic state and results in
an increased intensity of the symmetric mode in the spectra.
The increase effectively causes a force constant change in the
local coordinate directions after the transition to the other
surface. That force constant change allows wave packet motion
to occur along the symmetric direction because motion in that
direction must occur if the wave packet is to “relax” to is the
favored geometry in the new electronic state.

The parameterφ modulates the effect ofkc by reducing the
local mode behavior and returning normal mode behavior. Since
the wave packet is aligned increasingly along normal modes
with an increase in the magnitude ofφ to π/4 there is less motion
along the symmetric coordinate until ultimately atφ ) (π/4
the motion along the symmetric coordinate is completely
suppressed. Note that an increase in couplingε also reduces
the effect ofkc but cannot completely eliminate it.

F. Limiting Spectra. When only the constant coupling term
ε is used to calculate the spectra (∆coup) 0) and all interactions
between vibrational modes are ignored (kc ) 0 andφ ) 0), the
spectra take on the form expected from one-dimensional
calculations that use only the asymmetric coordinate.18,20,45

Figure 8. Effect of the coupling on the resonance Raman spectrum.
The spectra are calculated usingkc ) 0, 25, 50, and 100 cm-1. The
asymmetric band is the intense band at ca. 300 cm-1; the symmetric
band grows in (ca. 500 cm-1) askc increases. The values of the other
parameters are∆coup ) 0.15 Å, ∆pot ) 0 Å, k ) 1.02× 105 cm-1/Å2

(frequency) 450 cm-1), m ) 17 amu,ε ) 1400 cm-1, andφ ) 0°.

Figure 9. Effect of the rotation angle of the diabatic surfaces on the
absorption spectrum. Absorption spectra are calculated using values
of φ ) 0°, 15°, 30°, and 45° as labeled in the figure. The values of the
other parameters are∆coup ) 0.15 Å, ∆pot ) 0 Å, k ) 1.02 × 105

cm-1/Å2 (frequency) 450 cm-1), m ) 17 amu,ε ) 1400 cm-1, φ )
0°, andkc ) 50 cm-1.

Figure 10. Effect of the rotation angle of the diabatic surfaces on the
resonance Raman cross sections. Cross sections for the symmetric
(dotted lines) and asymmetric (solid lines) normal modes are calculated
using values ofφ ) 0, 15, 30, and 45° as labeled in the figure. The
values of the other parameters are∆coup ) 0.15 Å, ∆pot ) 0 Å, k )
1.02× 105 cm-1/Å2 (frequency) 450 cm-1), m ) 17 amu,ε ) 1400
cm-1, andkc ) 50 cm-1.
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Spectra that are calculated for z polarization using two values
of the coupling, one small (ε ) 10 cm-1) and one large (ε )
9000 cm-1) are shown in Figures 11A,B, respectively. The
spectra are dominated by the asymmetric mode. As the coupling
increases, the spectra become increasingly narrow and the
transition energies approach twice the coupling plus the differ-
ence between the zero-point energies. An extreme case (ε )
15,000 cm-1) is shown in the inset to Figure 11B. When the
constant coupling is large (representing a delocalized molecule)
and the coordinate dependent coupling is nonzero, the spectra
become dominated by and broadened by the progression in the
symmetric mode. An example (∆pot:∆coup ) 1:5 andε ) 9000
cm-1) is shown in Figure 11C. These trends can be interpreted
in terms of the direction of the motion of the wave packet as
discussed above. When∆coup ) 0, the wave packet motion is
primarily between the minima of the potential surfaces and along
the asymmetric coordinate (Figure 11A). When the coupling is
large, very little wave packet motion occurs and the spectrum
is sharp. Thus when the constant coupling is large and there is
also coordinate dependent coupling, increasing the latter in-
creases wave packet motion in the symmetric direction and the
symmetric stretch becomes increasingly important in the
spectrum.

4. Summary

Both symmetric and asymmetric normal modes can contribute
to intervalence absorption spectra. In addition, both types of
modes can have appreciable intensities in resonance Raman
spectra taken in resonance with the intervalence transition.
Depending on the interactions in the molecule, either type of
mode can dominate the spectrum. This result is surprising
because the standard approach to treating intervalence transitions
places emphasis on the asymmetric coordinate whereas the
standard approach to electronic and resonance Raman spectros-
copy predicts that highly displaced symmetric modes will
dominate the spectra. Generally, the intervalence absorption
spectra are broad and do not reveal the relative importance of
the two types of modes. In contrast, Raman spectra are very
sensitive and provide much more information about the sym-
metry of the modes and thus the interactions in the molecule.

The relative intensities of the symmetric and asymmetric
modes are most sensitive to the interplay between the electronic
coupling between the sites (ε), the changes in bond lengths that
occur when the electron is transferred (∆pot) and the sensitivity
of the coupling to the distance between the electron-transfer
centers (∆coup). In strongly delocalized systems (largeε) the
symmetric mode will be prominent. For a givenε, the more
sensitive the bond length to the change in the charge after
electron transfer the more intense the asymmetric mode. The
more sensitive the coupling to the distance between the sites,
the more intense the symmetric mode. The physical meaning
of these trends are readily visualized by the direction of the
motion of the wave packet on the coupled potential surfaces.
The relative intensities are dependent upon, but are less sensitive
to, the local vibrational mode coupling. The trends required for
an increase in the symmetric mode are an increase inkc the
difference in the force constant, and a decrease inΦ, the rotation
of the diabatic surfaces.

Quantitative fitting of spectra must be approached and
interpreted carefully because of the large number of important
and interacting parameters present even in a simple two-
dimensional model. However, the trends that are measured in a
series of compounds can reveal the most important interactions
in the molecules. The most general result from our calculations
is that the more delocalized the system, the more important the
contribution of the symmetric modes to the spectra, and vice
versa. Detailed understanding of mixed valence molecules will
require the combination of multiple spectroscopies to fully
determine the vibronic Hamiltonian.
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