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The interpretation of single-molecule measurements is greatly complicated by the presence of multiple
fluorescent labels. However, many molecular systems of interest consist of multiple interacting components.
We investigate this issue using multiply labeled dextran polymers that we intentionally photobleach to the
background on a single-molecule basis. Hidden Markov models allow for unsupervised analysis of the data
to determine the number of fluorescent subunits involved in the fluorescence intermittency of the 6-carboxy-
tetramethylrhodamine labels by counting the discrete steps in fluorescence intensity. The Bayes information
criterion allows us to distinguish between hidden Markov models that differ by the number of states, that is,
the number of fluorescent molecules. We determine information-theoretical limits and show via Monte Carlo
simulations that the hidden Markov model analysis approaches these theoretical limits. This technique has
resolving power of one fluorescing unit up to as many as 30 fluorescent dyes with the appropriate choice of
dye and adequate detection capability. We discuss the general utility of this method for determining aggregation-
state distributions as could appear in many biologically important systems and its adaptability to general

photometric experiments.

I. Introduction

In the past decade, single-molecule measurements have
become an important technique for studying complex biochemi-
cal systems.!? The field of single-molecule research is not
strictly limited to measurements of one molecule but also
includes multimolecular single active units as they function in
some local environment (e.g., a dilute solution, polymer matrix,
or the interior of a living cell). Some recent examples include
enzyme>* and ligand-binding’ dynamics, peptide-*7 and protein-
folding® dynamics, and molecular-® and self-assembly.'?

The sensitivity of single-molecule measurements has revealed
aggregation that would be undetected in traditional measure-
ments.' 12 When the goal is to measure a single molecule, it is
important to be able to distinguish aggregates of various orders
so as to properly partition them in the analysis. Since photo-
bleaching of the dyes serves as a verification of the presence
of discrete fluorescing units, repeated photobleaching of multiple
dyes will provide evidence of the number of dyes present in an
aggregate. In some cases, aggregation of molecular systems is
the focus of the experiment and the ability to quantify
aggregation is of the utmost importance.'! 13

Fluorescence intermittency results from photophysical or
photochemical transitions between emitting or “bright” states
and nonemitting or “dark” states. Fluorescence intermittency
is problematic because the photons deliver all the information
about the system to the observer.'* When a molecule transits to
a nonfluorescent state, no information is delivered about that
state. From this point of view, photoblinking and photobleaching
are indistinguishable as no dark state can provide information
in photon detection experiments. However, since in photoblink-
ing the molecule later returns to a fluorescent state, the
distribution of dwell times in the nonfluorescent state can
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provide information regarding the nature of dark state(s) and
can potentially distinguish multipath recovery.>!3 In principle,
it is possible to use this methodology to distinguish multiple
dark states that are attributed to various damaged states of
fluorescent probes.'®

The dark state dwell times coupled with the identification of
the preceding (prior) and succeeding (posterior) bright states
are the only information that can provide knowledge about the
dark states. Sorting the dwell-time distributions by prior and
posterior states can limit the kinetic schemes, however this
approach requires a large number of observations of dark states
for each possible pair of prior and posterior states. Nevertheless,
it is the information (from photons) that is obtained from the
bright states that permits any inference about the dark states.
Therefore, under certain circumstances, intermittency can be
viewed as an advantage rather than an inherent problem for
single-molecule fluorescence measurements. For example, the
discretized loss of fluorescence is considered one of the standard
pieces of evidence that the system under observation is a single
fluorescent unit. In another example, the fluorescence of an
oxazine dye was transiently interrupted by contact with a
quencher attached to the other end of a peptide such that the
intermittency itself provided the source of the dynamical
information.!” Analysis of intermittency has also been used to
learn about the electronic states of semiconductor quantum
dots.'8

The full potential of single-molecule experiments is realized
when a state-to-state trajectory can be reconstructed from the
data. This trajectory consists of transitions between states and
dwell times within the states. The state-to-state trajectory allows
greater kinetic detail to be inferred from the measurement of
the time evolution of the system. Single-molecule spectroscopy
simplifies the interpretation of the time evolution of a system
because of the tractable state space, Z, that is present. If one is
interested in extending the reach of “single” molecule (single-
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state) measurements to multiple molecules, then it is important
that the number of states be reasonable. Models must be simple
enough that the state space remains tractable but still adequately
describes the underlying dynamics being studied.

If a single molecule has s states, then a distinguishable pair
of molecules has Z = s? states. An indistinguishable pair has
Z =52 — XZ| i states. In general, a system of N molecules
with s states per molecule has states totaling

s", distinguishable
Z= (1

(N sy 1), indistinguishable
This leads to an astronomical number of states for a system of
many particles and many states. Even for systems with small
numbers of available states, there will be a finite number of
particles for which it will no longer be practical to attempt to
approach analysis using the state-to-state trajectory paradigm
because the information from the photon stream will not be
adequate to distinguish between the states.'* By comparison,
in a bulk measurement, one observes the ensemble average of
this state space and typically will observe the properties of the
state(s) of maximum multiplicity. One strategy, therefore, for
multiple-molecule state-space reduction is to focus on the states
of maximum multiplicity to simplify the interpretation of the
dynamics.

Hidden Markov models (HMMs) have been extensively used
in diverse fields such as speech recognition, bioinformatics,
neuroscience, climatology, and finance, resulting in the rapid
development of flexible methodology for their treatment.!9~23
We have previously reported the application of hidden Markov
models to the “two-color problem” where a molecule fluctuates
between two states that can be distinguished based on the color
of the fluorescence.?® In that work, it was observed that
estimation of two-state kinetic parameters was robust even in
the presence of considerable background and spectral crosstalk
in the data and for kinetic rates comparable to the photon count
rates. We introduced simple model selection methods that
showed that the presence of “non-Markovian” two-state dynam-
ics could be detected and justified statistically. Application of
hidden Markov models to single-molecule photon counting
experiments extracts maximal information from the photon data
stream. When properly implemented, HMM analysis uses all
the information from the photons prior and posterior to a given
photon to make its state assignment.'*2

In the present work, we exploit the intermittency of fluores-
cent probes in the analysis of multichromophoric experimental
data. Our interest in discrete chromophore counting is motivated
by the many important systems that self-assemble from simpler
subunits. Our current applications are counting the number of
dyes and trajectory reconstruction in the presence of intermit-
tency for a multiply labeled polymer, however, the technology
is readily applicable to other systems. Dendritic chromophores
have generated interest for photonics applications.?’ Light
harvesting complexes have multiple chromophores that behave
as a strongly coupled system.”® Many biological assemblies
involve multiple copies of the same protein. Tubulin assembles
to form microtubules;?® crystallin forms transparent materials
in the eye;* the bovine liver enzyme monoamine oxidase B
self-regulates based on its oligomerization state;*' chromosomes
have many copies of histone proteins;3? viruses self-assemble
multiple copies of their capsid proteins;3} and the aggregation
of misfolded proteins and peptides into cross-f3 amyloid fibrils
is implicated in many common diseases.!?
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We begin with a discussion of our input model, its assump-
tions, and methods for initializing the model parameters for
HMM analysis. Next, we report the results of experimental
photobleaching trajectories for dextran conjugated with multiple
6-carboxy-tetramethylrhodamine dyes analyzed using HMM and
discuss the resolution of this technique. Then, we show via
information theory and Monte Carlo simulations the extendibility
and limits of this methodology. The limits are derived in terms
of the dye quality factor, 7, equal to the required number of
photons detected prior to photobleaching, required to distinguish
one dye blinking in the presence of varying numbers of identical
fluorophores. We use results from bulk control experiments to
support our model assumptions and discuss when these assump-
tions become invalid, that is, when a more complicated model
is required to reconstruct the photon trajectory. We indicate
some possible applications of this technique. Finally, we
compare our technique to other methods in the current literature.

II. Materials and Methods

A. Samples and Preparation. Dextran conjugates were
obtained from Invitrogen Molecular Probes (Eugene, OR) with
molecular weights of 70 kD and 2000 kD. The former weight
consisted of two separate conjugates with 3.8 (catalog # D-1818)
and 5.8 (catalog # D-1819) mole and the latter 58 (catalog #
D-7139) mole of tetramethylrhodamine (TMR) per mole of
dextran. Steady-state excitation and emission spectra and
fluorescence lifetimes of bulk TMR-labeled dextran solutions
were taken for concentrations varying from micro- to millimolar
to observe possible concentration-dependent effects. All bulk
measurements were made on ~1 mL of sample solution. For
single-molecule measurements, the conjugates were dissolved
in 0.2 um filtered HPLC water or HPLC methanol (Fisher
Scientific, Pittsburgh, PA) and diluted to approximately 10 pM.
Glass coverslips used for sample substrates were prepared in a
standard solvent cleaning (SC-1) bath.3* The SC-1 protocol is
10:1:1, HoO/NH4OH/30% H»0, at 125 °C. The coverslips were
rinsed with HPLC water and dried for immediate use. The
cleaned substrates were imaged with the single-molecule
microscope to verify the absence of any preexisting fluorescent
particulates. A 5—20 uL aliquot of dextran solution was then
applied to the coverslip.

B. Time-Correlated Single Photon Counting. An 80.00000
MHz Spectra-Physics Ti:Sapphire laser was operated at 1028
nm with a Gires-Tournois interferometer to control the spectral
bandwidth and provide nearly Gaussian 12 ps fwhm pulses as
measured from deconvoluting second harmonic-detected auto-
correlation. The vertically polarized pulse train was sent through
an acousto-optic modulator (Con Optics model 360—80) to pulse
select for a pulse spacing of i x 12.50 ns with i = 2, 3, 4 and
then frequency doubled to 514 nm by a type I second harmonic
generating f3-barium borate crystal (CSK Optronics, Culver City,
CA).

For bulk solutions, the horizontally polarized, frequency-
doubled beam was directed through a half-wave plate and a
Glan-Thompson polarizer. The resulting vertically polarized
light was incident upon a sample cuvette with a 1 cm optical
path. Fluorescence was collected at 90° to the excitation path
with a 50 mm biconvex lens and passed through a matched,
second Glan-Thompson polarizer (set at 0°, 90°, or 54.7° to
determine anisotropy). The polarized signal was scrambled with
a quartz depolarizer (Optics for Research) to avoid the polariza-
tion dependence of the grating transmission and passed into an
Acton Research Corporation SP-150 monochromator with
entrance and exit slits set to 1.0 mm to limit the detected
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Bright/Emitting

Figure 1. Reduced two-state model used for HMM analysis of single-
molecule photobleaching trajectories. The shaded oval region represents
spectroscopically indistinguishable emissive (bright) states with inset
circles representing distinct bright states. The shaded rectangle region
represents spectroscopically indistinguishable nonemissive (dark) states
with inset squares representing distinct dark states. Active states,
whether dark or bright (A), are considered to be related by reversible
physical processes such as isomerization or intersystem crossing.
Damaged states (D) are considered to be chemically modified dark or
bright states. Bleached states (B) are dark and entered irreversibly. If
there is only one connection between the emitting and nonemitting
states, then the system can be reduced to a two-state system. The use
of hidden Markov models can make it possible to extract both the
emitting and nonemitting hidden states given enough state transitions
to characterize them.

Dark/Non-Emitting

bandwidth to 5.0 nm. Photon arrival times were determined with
a Hamamatsu microchannel plate (MCP) and a Becker-Hickl
SPC-630 correlator using Becker-Hickl SPCM software. The
instrument response function typically had a full-width at half-
maximum (fwhm) of ~50 ps. TCSPC data collection was
performed to up to numerical overflow of the photon counting
board (65 535 photon peak count).

For single-molecule measurements, the frequency-doubled
laser light was transformed to circular polarization with a
quarter-wave plate (CVI Laser, model, QWPM-515-05-4-R10)
and focused to a diffraction-limited spot via a 60X, NA 1.4
Olympus oil-immersion objective model (UIS2-PLAPON-
60X0). A closed-loop nanopositioning stage (Mad City Labs—
nano-bio) provided imaging capability with 3 nm digitally
addressable resolution. The fluorescence emission was collected
using the same objective, redirected using a dichroic mirror
(Omega Optical, model, 540 DCLP), and filtered using band-
pass (OptoSigma, models, 079-3360 and 079-4490)) and notch
(Kaiser Optical, model: JSPF-514.5-1.0) filters to collect only
the wavelength range of TMR emission (550—650 nm) and
reject the excitation wavelength of 514 nm, respectively. Finally,
a polarizing cube separated the emission into vertical and
horizontal polarization components incident upon separate
avalanche photodiodes (PerkinElmer, model SPCM-AQR-15)
with a dark count of <50 Hz. A Becker-Hickl SPC-830 time-
correlated single photon counting (TCSPC) board and a Pentium
4 computer with custom-made LabVIEW virtual instruments
controlled the experimental data collection.?

The process for single-molecule data collection started with
image scanning at low laser powers (0.25—1.0 4W) to locate
single molecules (see Figure 2). Images were saved for later
analysis of intensity vs number of TMR dyes. Fluorescent
lifetimes collected during imaging were used to verify that a
single molecule had the expected lifetime (2.5—2.8 ns) of TMR.
A cursor system was used to mark the desired molecules for
first-in-first-out (FIFO) data collection. In FIFO mode, each
detected photon was stamped with detector, microtime (time
of arrival with respect to the excitation pulse), and macrotime
(time of arrival on total data collection time scale). During FIFO
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Figure 2. Scanned image of 5.8 TMR-conjugated 70 kD dextran: (A)
the laser was centered away from any fluorescent molecules to obtain
background intensity; (B) a bright spot that has nine states; (C) a dim
spot that resulted in four states; (D) a spot that resulted in six states.

data collection, higher powers of 2—10 W were used to
intentionally photobleach the TMR dyes on a reasonable time
scale of approximately 5 s to 5 min. The background photon
rate was measured using the first recorded cursor, and all
molecules were photobleached to the background level.

C. Fluorescence Decay Analysis. Fluorescence lifetimes
were analyzed using a convolute-and-compare, nonlinear, least-
squares technique.?¢ In this technique, the instrument response
function is convolved with a theoretical decay function. The
theoretical decay was a single exponential corresponding to the
fluorescent lifetime of TMR. In some cases described below, a
weighted sum of two or more exponential decays was required.
Single-molecule fluorescent lifetimes were fit both for the entire
photon trajectory and dye-by-dye using the state reconstructions
provided by the HMM analysis. The single-molecule microscope
instrument response typically had a fwhm of approximately 400
ps.

D. Data Simulations. Simulated photon arrival trajectories
were created using a C compiled external operation (XOP) in
Igor Pro v.5 multi-platform analysis software (WaveMetrics,
Oswego, OR). The XOP creates photon emission rates expo-
nentially distributed according to input model parameters
(detailed below). State-dependent sequential first-passage times
were simulated from the sum of all rates. Transitions were
determined by the branching ratios between fluorescence,
bleaching, and recovery.

E. HMM Implementation. We have previously discussed?®
our implementation of a random-observation-time HMM data
analysis for single photon streams using an approach inspired
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by Rabiner.! In the present work, we have changed our
implementation in several ways. The analysis is now performed
by an Igor Pro XOP we have written for both Windows and
Macintosh computers.> We perform all of our calculations using
the first-passage-time solution to the kinetic equations rather
than the random telegraph process master equation. This is
justified in the limit where the photobleaching/blinking rate is
much slower than the emission rate.

The model in the present work is based on two-state, on—
off dynamics, discussed in detail in the following section and
depicted in Figure 1. Analysis using this hidden Markov model
requires initialization of five parameters: background and
fluorophore emission rates, photobleaching and photorecovery
rates, and total the number of states including the background
as a state. Initialization was done using a statistical comparison
test on binned photons. Starting from the end of the trajectory
to detect the background level and final photobleaching event,
the algorithm used a number of photons (100—5000) to calculate
the first two statistical moments of the distribution for the
emission rates. Proceeding backward through the photon stream,
another collection of 100—5000 photons was used to calculate
the second distribution’s statistical moments. The two distribu-
tions were compared using a Students T-test. If they were judged
to be statistically indistinguishable, then the two distributions
were combined to form one distribution. The algorithm repeated
until the distributions were different and, thus, found a photo-
bleaching step. The number of photons used to compute the
distributions were varied to exclude the possibility of missing
or averaging across a state transition.

The amount of information provided by transition rates per
single molecule was low enough compared to that of the
emission rates that accurate reconstruction of a trajectory was
possible with transition rate parameters that were within an order
of magnitude of the true values. The transition rates (k,, and
krec) were initialized assuming that two photobleaching events
occur for each dye during the experiment. This takes into
consideration the possibility for one recovery event for each
dye state during the observation time. Therefore, k, = 2/T and
krec = 1/T, where T was the total observation time of the single
molecule.

The total number of dyes in the model was incremented from
1 to 12 giving 2—13 total states including the background state.
The four rates were optimized for each number of dye states
using four different methods to calculate the maximum total
likelihood for each case to determine which number of states
was most likely. The three methods were as follows: Simplex
minimization,’” More—Hebdon using finite differences, and
simulated annealing. The first method was implemented as an
XOP in Igor Pro. The latter two methods were performed using
Igor Pro’s Optimize operation. To evaluate the quality of the
optimized solutions, we performed a discrete point integration
of the probability space by storing the iterative probability results
from the simulated annealing minimization. We also used an
adaptive, recursive Monte Carlo integrator (also described in
Numerical Recipes) to integrate the probability space of the
model for the range of dye states to clear disagreement; however,
this algorithm was not used consistently because it does not
return the optimized rate parameters. Results from all of the
methods were compared to determine the number of dye states
in each molecule measured. In most cases, all techniques agreed
with one another. For cases where there was disagreement, the
solution that was most supported or the solution with the lowest
number of states was chosen.
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III1. Results

A. HMM for Multi-dye Photobleaching. To be able to
reconstruct trajectories of a multi-dye system, we must have a
strategy to reduce the dimensionality of the state space such
that a single-molecule measurement will be able to provide
enough information to make state assignments. Equation 1
suggests that the state space can be greatly reduced by treating
the dyes as indistinguishable. This assumption also simplifies
the HMM since it requires that all the fluorophores be
spectroscopically indistinguishable, that is, have the same mean
emission (kerm) and transition rates at a given laser intensity.

Even after invoking dye indistinguishability, the total number
of states will become intractable for even a modest individual-
dye state space. Therefore, we will use the smallest number of
states that can still reasonably reproduce the features observed
in photobleaching trajectories (i.e., photobleaching with oc-
casional photorecovery). We use two states in the model (Figure
1), corresponding to bright (emitting) and dark (nonemitting)
states of the dye. The shaded oval of Figure 1 contains unique
“on” (bright) states in circles, while squares in the shaded
rectangle are unique “off” (dark) states, and A, D, and B
represent active, damaged, and bleached dyes, respectively. If
various luminescent states exist and are not clearly distinguished
directly from measurement, it is possible to extract them through
hidden Markov model analysis. One way to do this is to
construct distributions of dwell times and fit the nonexponential
distribution to two or more exponentials. Each exponential
would, then, represent a new state for the HMM. Examining
the posterior and prior states for the new state can establish the
connectivity to the rest of the HMM state diagram.

Dark states within the shaded rectangle of Figure 1 can
include any nonradiative condition, for example, intersystem
crossing into excited triplet states, intermolecular charge transfer
of electrons or holes, proton transfer (intra- or intermolecular),
cis—trans isomerization of double bonds, twisted intramolecular
charge transfer, photooxidation, at high irradiation, two photon
excitation leading to radical ion pairs, and so forth. The existence
of these states in TMR and other organic dyes has been well
established in the literature.38~4°

Transitions between the two domains of states are character-
ized by two rates: photobleaching from bright to dark (kp,) and
recovery from dark to bright (k..). Reducing the state space
using this two-state model brings the problem to a tractable level.
The HMM analysis can then evaluate if an increase in model
complexity is necessary.

When multiple indistinguishable fluorophores are present, the
number of independent parameters does not increase under our
two-state model as the on-state emission rates and the transition
rates each are additive. The off-state of the nth fluorophore
corresponds to the on-state emission of the (n — 1)-th fluoro-
phore. Under these assumptions, when N TMR fluorphores are
present, the emission rate for n < N dyes is nkey and the rate
for transitioning from this state is the sum of the bleaching (k)
and recovery (k) rates, which scale with N and n as

Ky = ki, + (N = n)k )

By using this model, we increase the information available for
the determination of the four fundamental rates.

To further simplify the model, we have assumed that between
the individual observed photons only single dye state jumps
are allowed. At the laser powers used in this study, the time for
photobleaching and recovery are two or more orders of
magnitude larger than the interphoton time. Therefore, we do
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not expect to observe an instantaneous change of more than
one dye state. Observation of simultaneous multiple-dye events
would suggest the possibility of cooperativity in the process-
(es) leading to blinking and/or coupling between the dyes. In
the dwell time analysis with our two-state model, multiple-state
jumps would show up as additional exponential components
with much higher rates than the single-state jumps because the
state pathway is forced into instantaneous residence in the
interstitial state. Equation 2 would contain an additional rate
term for each multiple-state jump included in the model. The
generalized rate matrix has the form

kl,l kl,z 0 0 0
kyy kyy kyz O ee 0
2 Ky kg e 0 |,

0 ks

[
»

0 0 0 - kyy kyy
ki,i = kbg + (i — 1)k

=Dk i=j— 1
N = iV i=j+1,

iel{l,N},

jeqny @

iy

The rates corresponding to transitions between nonadjacent
states were set to zero under the assumption of no double-state
jumps between photons. No change in model likelihood has been
observed by allowing or disallowing these transitions, and no
multiple bleaching or recovery events were observed within one
interphoton time when the full N x N rate matrix was used.
With this “ground-up” model approach, the model state space
to be optimized consists of only four parameters for a given
number of states.

B. Single-Molecule Data. Here, we report the analysis of
120 total 70 kD dextran molecules, of nearly equal numbers of
the 3.8 and 5.8 TMR conjugates. The sample was dissolved in
water then physisorbed and imaged on a glass coverslip. The
fluorescent dextran polymers were typically in an adequate
volume of water to maintain hydration; however, the phys-
isorbed molecules remained at fixed positions throughout the
experiment. A scanned single-molecule image of the 5.8 TMR-
labeled dextran is shown in Figure 2. Four trajectories from
this image were selected to illustrate typical observations in the
photobleaching experiments. The plots below the image display
the photon trajectories that correspond to the molecules labeled
in the image: (A) the laser was focused on a region away from
any fluorescent molecules to obtain the background photon
detection rate; (B) a fluorescent spot that resulted in nine states
when analyzed by HMM; (C) a four-state molecule as indicated
by HMM analysis; (D) a six-state molecule. Each spot was
analyzed using the HMM algorithm to determine the most likely
number of dyes to include in the degree of labeling distribution.

The fluorescence photobleaching trajectories typically exhibit
distinct photobleaching steps. After one or more photobleaching
steps, fluorescence recovery was sometimes observed where the
intensity made a steplike return to a higher intensity level.
Eventually, all of the fluorophores are permanently pho-
tobleached to the background level. When the trajectory shows
well-defined discrete states, HMM analysis of the trajectories
for the total number of fluorophores gives the log-probability
of the model and shows a sharp increase as one approaches the
correct number of fluorophores. The log-probability has a less
steep decrease for dye numbers higher than the correct value.
Figure 8 shows a simulated trajectory with the log-probability
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Figure 3. Experimentally obtained fluorescence trajectories of TMR-
labeled dextran where the photobleaching steps are (A) sharp and readily
detected for a total of 7 states, (B) less distinct but still resolved at a
maximum likelihood of 28 states, (C) within the limits of our technique
at 35 + 4 states showing that the total number of states is not the only
variable dictating the ability to determine the number of states, and
(D) beyond the capability of this detection technique. The graph insets
show the posterior log-probability optimized for each number of
fluorophores analyzed in the context of our model.
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Figure 4. 5.8 TMR-labeled (70 kD) dextran on a glass coverslip while
still wet. Very little state-dependent polarization is observed (upper
graph, polarization ratio of zero indicates isotropic emission). The
bottom graph shows a histogram of the photon trajectory binned at 10
ms for the combined two-channel polarization data. The eight-state
(seven-dye) reconstruction is overlaid.

as a function of the number of states in the inset. Figure 3
displays examples of experimental trajectories (discussed in
more detail below) where the determination of the number of
states using the techniques described above are (A) distinct, (B)
near the limit of our detection technique, (C) identifiable to
within a range of states, and (D) beyond the capability of
detection using the intensity-based technique reported here.
The polarization trajectory of wet samples shows no prefer-
ential orientation of the fluorescence dipole as illustrated in
Figure 4. The bottom panel of Figure 4 is the 10 ms binned
photon trajectory with the HMM photon-by-photon state
reconstruction overlaid. The top graph in Figure 4 shows the
dipole angle implied by the polarization ratio. In this experiment,
we cannot distinguish between fluorescence from dipoles
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Figure 5. 5.8 TMR-labeled (70 kD) dextran allowed to dry on a glass
surface. Polarization effects can be seen in the upper graph, where the
state-dependent polarization ratio is plotted (zero indicates isotropic
emission). The bottom graph shows a histogram of the photon trajectory
binned at 10 ms for the combined two-channel data. The five-state
(four-dye) reconstruction is overlaid.
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Figure 6. Fluorescent lifetimes evaluated from a convolute-and-
compare algorithm (described in the text) for a typical dextran molecule.
The lifetime is shown as a function of dye number (state) in the overall
trajectory. The shaded region represents one standard deviation of the
fluorescent lifetime from a fit to the entire photon trajectory. The state-
dependent lifetime is within the statistical range of the entire trajectory
(shaded region), and the completely photobleached state exhibits a much
shorter lifetime.

oriented at or near 45° and that from dipoles that are rapidly
reorienting. Therefore, 45° corresponds to isotropic emission
from the sample. The polarization trajectory of dry samples
shows some fluctuating preferential orientation of the fluores-
cence dipole as illustrated in Figure 5. The bottom panel of
Figure 5 is the 10 ms binned photon trajectory with the HMM
photon-by-photon state reconstruction overlaid. The top graph
in Figure 5 shows the dipole angle implied by the polarization
ratio. Jumps in the polarization occur in sync with some, but
not all, of the blinking events. Most of the polarization jumps
were relatively small. These effects are overcome by combining
the detected horizontal and vertical polarization components to
get the total fluorescence intensity before applying the two-
state multi-dye HMM described above to determine the best
value for the single-dye intensity fit to all of the dyes on a given
molecule.

Wet single-molecule samples showed fluorescence decays that
were best fit to a single exponential with the expected lifetime
of ~2.5 ns. Figure 6 shows typical results from the nonlinear
least-squares convolute-and-compare analysis for fluorescent
lifetime. The fluorescent lifetime for each dye state is calculated
by collecting the photons for each state from the HMM
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Figure 7. Comparison of the number distribution of TMR dyes on
two conjugates, 3.8 and 5.8 TMR dyes/mole of dextran. The solid curves
are the result of a fit to the data with a zero-excluded Poisson
distribution. The fitting resulted in distributions with centers at 3.96 +
0.31 and 5.58 £ 0.27 dyes.

reconstruction. The shaded region indicates the statistical
uncertainty bounds of the lifetime from the fluorescent lifetime
fit to the entire photon trajectory. The state-dependent lifetime
resides within the shaded region, indicating no individual TMR
fluorophores experience quenching due to dye—surface or dye—
dye interactions. The background measured after complete
photobleaching typically showed a decay that was longer than
what was typically measured in locations that had never shown
fluorescent molecules. In addition, there were no quenching
effects as a function of laser intensity in single-molecule
measurements.

From the reconstructed trajectories, we determined the most
likely number of dyes and compiled these values into histograms
for both the 3.8 and 5.8 TMR/70k dextran polymers. Figure 7
shows the resulting distributions of the degree of labeling. The
solid lines show least-squares fits to the distributions using a
zero-excluded Poisson distribution. Zero is excluded because
this experiment cannot detect dextran without TMR conjugation.
The Poisson fits to the 3.8 and 5.8 dye degree-of-labeling
distributions had mean values of 3.96 £ 0.31 and 5.58 £ 0.27
dyes, respectively. Occasional outliers to the distributions were
observed that contained more than 10 dyes. These spots have
an anomalously high degree of labeling and are likely due to
multiple polymers.

C. Bulk Fluorescence Control Experiments. TCSPC polar-
ized fluorescence decay measurements on bulk solutions of 3.8—
70k and 58—2M dextran polymers show initial anisotropies of
ro = 0.16 & 0.01 and ry = 0.17 £ 0.02, respectively, which
decay to zero with lifetimes of 7. = 1.68 4 0.04 ns and 7, =
1.25 4+ 0.02 ns, respectively. These values are independent of
dextran concentration. The bulk measurements of absorption
and emission spectra showed no evidence of spectral splitting
or fluorescence quenching that are commonly observed when
strong dye—dye interactions occur, typically at high TMR
concentrations.*

D. Theory and Simulations. To evaluate the HMM analysis,
we performed Monte Carlo simulations of the photobleaching
of varying numbers of dyes. Figure 8 shows an example of a
simulated six-dye (seven-state) trajectory (binned to 10 ms for
display in the figure) with the true and HMM reconstructed state
trajectories overlaid. The state-dependent probability resulting
from simplex optimization of the simulated trajectory of Figure
8 is shown in the figure inset. The reconstructed trajectory has
been shifted up to make viewing easier. The true and recon-
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Figure 8. Simulated six-dye (seven-state) photon emission trajectory
created using the two-state photobleaching model described in the text.
The true and reconstructed trajectories are plotted over the 10 ms binned
trajectory, and the dye state is shown on the right axis. The reconstructed
trajectory has been shifted upward by 0.2 to facilitate viewing. Inset:
the simplex optimized state-dependent log-probability, which shows
maximum model likelihood (least negative In(P) at seven states).

structed trajectories were not binned during the analysis; they
represent the photon-by-photon trajectory. Because there were
few bleaching and recovery events compared to the number of
photons for each dye state, the ability to determine these
transition rates accurately was difficult on a molecule-by-
molecule basis. The amount of information provided by transi-
tion rates per single molecule was low enough compared to that
of the emission rates that accurate reconstruction of a trajectory
was possible with transition rate parameters that were within
an order of magnitude of the true values. We found that the
algorithm accurately identified photobleaching and recovery
steps to within a few photons. The algorithm was most likely
to miss steps at the beginning of the trajectory where the number
of active dyes is at its maximum. The relative change in
emission intensity is strongly dependent on the number of dyes.

Iy Nk, t ki

Iy (N = Doy + ki

The product of the excitation likelihood (Zkexcite), the quantum
yield (¢qy), and the collection (¢eon) and detection (¢ger)
efficiency gives the expected count rate at the detector. Under
nonsaturating conditions, the excitation probability is propor-
tional to the illumination fluence. Therefore, under conditions
of linear response, the expected number of photons emitted
before a dye photobleaches, 7 = (Ikexcite®QYPcoPdei?)/(TkpuNp)
= kem/kpb, is independent of intensity and the number of dyes
present.

We can use the information theory to predict the limits of
resolution of a photobleaching dye-counting experiment by
examining the number of photons required prior to photobleach-
ing/blinking to provide enough information to distinguish the
N and N — 1 levels. The number of photons and the time to the
first bleaching/blinking event are the two relevant observables
for this problem. Neglecting any cooperativity or self-quenching
of the dyes, the distribution of the number of photons emitted
by the dyes prior to a photobleaching step is independent of
the number of dyes present

NP
LN, ) = (H”W 4)

The likelihood of observing photobleaching after time ¢ and N,
photons in that time is

Messina et al.

KemdV (kemt(i + Nn))N"e*kemz«l/wamH» )

PNyl N) = N1
p
The data analysis method must distinguish between the N and
N — 1 states using the number of photons N, emitted prior to
the bleaching event occurring at time 7.
The information contained in the photon stream regarding
the number of dyes present is

SN.Ntln) = HNp) = NNy £.7) ©)

1 oo
NNyt = [ X D PN IN = NLN = j)
j=0 N,=0
PN N = LN = j)
log,(— ™

Y, PNLMN — PN — k)
k=0

Using eq 5 and the uniform prior °(N) = (N — 1) ineq 7,
we can calculate the number of photons required to distinguish
between N and N — 1 dyes by evaluating the integral and the
first summation and solving for the minimum number of
photons, N, which reduces the entropy to the point where it is
99% likely that the state will be correctly identified. The solid
lines in Figure 9 show how the number of photons required
increases with the number of dyes to be distinguished. To obtain
this number of photons consistently, the quality of the dye must
be substantially higher as suggested by eq 4. The results we
calculate for N, in Figure 9 are analogous to the empirical
resolving power of the standardized Poissonian log-likelihood
change-point formulation derived by Watkins and Yang. The
broken lines in Figure 9 show how the dye quality parameter,
77, needed to distinguish the first photobleaching/blinking step,
increases with the number of dyes present.

To evaluate the effectiveness of the HMM approach to
detecting the first step, we evaluated Monte Carlo simulations
of photobleaching for N = {2, 5, 10, 20, 30} at various levels
of signal-to-background y = {10, 5, 2, 1} and determined the
quality of dye required for the HMM algorithm to successfully
detect the step 99% of the time. The results of these simulations
appear as the open symbols in Figure 9. The Monte Carlo
simulations indicate that the HMM algorithm is operating near
the information—theoretical limit for determining the number
of dyes present as dictated by the detection of the first bleaching
step. In general, the HMM algorithm should be expected to do
slightly better than in these simulations since occasional recovery
to the original level would provide additional photons for the
detection of the highest intensity level.

IV. Discussion

A. Validation of Model Assumptions. The simplified two-
state photobleaching model requires several assumptions that
may not be valid for all systems or in all circumstances. The
most important assumptions are that the dyes can be considered
to be indistinguishable and independent. In the hidden Markov
model, we additionally assume that only one dye will blink
between photon observations.

Dye indistinguishability requires that the local environment
be essentially identical for each active dye and remain so
throughout the experiment. This dictates that there be no large
dielectric discontinuities near the dye (e.g., an air—glass
interface), otherwise the fluorescence properties will depend on
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Figure 9. Number of photons that need to be emitted prior to the first
photobleaching/blinking event to distinguish that initial level from the
lower intensity level following the first photobleaching/blinking event.
The solid lines are calculated from information theory. The dashed lines
are also from information theory calculation and include a correction
factor from eq 4 to represent the dye quality factor necessary for
detection. The dots are Monte Carlo simulation results of the HMM
capability of detecting a photobleaching step for a given dye quality
factor. Results are shown for various signal to background (y) values.

a lab-fixed axis. At any instant in time, each dye will be in a
slightly different environment and have a different orientation
with respect to the laboratory. In the presence of local
heterogeneity, the dyes must average over the different environ-
ments on a time scale that is short compared to the fastest
relevant blinking time.

Samples on glass that were allowed to dry for at least 2 h
showed fluorescence anisotropy and quenching, as well as
nonexponential lifetimes. We attribute this to the orientation of
the dipoles with respect to the air—glass dielectric interface.
The dipole orientations become spatially frozen by TMR —glass
interactions. This polarization effect results in trajectories that
exhibit different fluorescent levels in horizontal and vertical
polarization detection channels. It is likely that the fact that the
polarization angle is different for different recoveries to the state
containing a single active dye is reflective of multiple dyes being
damaged but not permanently bleached. In the dry samples, as
different dyes happen to recover, the polarization takes on the
value reflective of that dye’s orientation with respect to the
laboratory polarization axis.

By contrast, measurements made on wet samples resulted in
little or no polarization effects and exponential lifetimes for most
of the states observed. This would suggest that the wet samples
are averaging over the conformational space rapidly compared
to the relevant blinking times. The rare, nonexponential states
observed in wet samples we attribute to dyes that are, by
happenstance of the labeling reaction, very close together
geometrically. Strong coupling of a pair of dyes that are close
together will make them different and therefore distinguishable
in our experiment.

The assumption of dye independence is suspect since one
expects to observe dye—dye interactions on systems with
multiple fluorophores in close proximity. In systems that have
regular, or highly symmetric, geometries with the distance
between chromophores that are small enough (~A), strong
coupling can occur resulting in spectral shifts and potentially
cooperative behavior as has been observed in the light harvesting
complex, LH2.'047 Structural fluctuations were observed to
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change the polarization properties of LH2 because of the
sensitivity of chromophore electronic coupling on geometry.'047
In the case of TMR—dextran conjugates each polymer is of finite
size and is labeled with several dyes. The dyes can, in principle,
couple. Some possible mechanisms are excitonic dynamics and
excimer formation (strong coupling) and fluorescent resonant
energy homotransfer (weak coupling). However, the labeling
of the dextran polymers is expected to be random and the
dextran itself has little long-range structure to hold chro-
mophores in a regular geometry. Therefore, strong coupling
between all the dyes is unlikely. However, if the density of dyes
is high enough, then the coupling will be strong some fraction
of the time and the spectral properties of those dyes will be
changed due to exciton formation.*® The fraction in the case of
the TMR—dextran conjugates that we studied must be small
since the bulk measurements of absorption and emission spectra
showed no evidence of spectral splitting or fluorescence
quenching that are commonly observed at the high TMR
concentrations that result in strong dye—dye interactions.

On the single-molecule level, strong coupling would manifest
itself in the photobleaching trajectories. The sequential bleaching
of dyes would have a very strong effect on the overall signal
due to the changes in the coupling between the dyes that would
occur upon blinking. The fact that the dipoles were randomly
oriented and that there was no evidence of nonexponential
decays for wet samples suggests that the dipoles were reorienting
rapidly enough to average over the modest dielectric inhomo-
geneity at the water—glass interface.

Fluorescence self-quenching has often been observed when
a system has multiple fluorescent probes in close spatial
proximity (see, for example, refs 9, 16, and 47). Our data
indicate that it was uncommon for the coupling to be strong
enough to cause substantial spectral and lifetime changes in the
dyes. In addition, there were no quenching effects as a function
of laser intensity in single-molecule measurements. However,
in the case of a few trajectories, as illustrated by Figure 3D, we
found that the log-likelihood with respect to the number of states
was not convex in the region of a reasonable number of dyes.
We attribute this to TMR—dextran conjugates with dyes that
are, by happenstance, very close together. When this occurs,
small changes in distance and structure can cause intensity
fluctuations that are not accounted for in the two-state model.

In the case of weak coupling, where Forster homotransfer is
expected to be the dominant mechanism, the expectation is that
the luminescence would experience a decay of anisotropy on
the time scale of the energy transfer. Bulk fluorescence
anisotropy measurements showed clear evidence of weak
coupling between the dyes in the form of fluorescent resonant
energy transfer. The fastest decay component will come from
the dyes that are closest together. Assuming a dextran polymer
is approximately spherical, then the distribution of nearest-
neighbor distances between dyes depends on whether the TMR
labels uniformly on the surface of the sphere or uniformly along
the chain length of dextran. The calculated Forster radius (Rp)
for FRET homotransfer between isotropically oriented TMR is
4.49—5.66 nm depending on the actual quantum yield. Molec-
ular probes suggest a quantum yield of ~0.45, which corre-
sponds to Ry = 5.14 nm. Assuming the nanosecond time-scale
depolarization occurs by FRET homotransfer between two dyes,
the mean distance between nearest neighbors would need to be
approximately 1.08Ry = 5.6 nm and 1.20Ry = 6.2 nm for the
70 and 2000 kD dextran, respectively. Literature values* for
the hydrodynamic radius (ry) of various molecular weights of
dextran in phosphate-buffered saline were determined to be ry-
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(70 kD) = 3.5 £ 0.2 nm and rg(2 MD) = 14.4 £ 0.6 nm. If
the labeling occurs randomly on the surface of a sphere, then
the mean distances between nearest neighbors for the 3.8—70k,
5.8—70k, and 58—2M conjugates are ~2.9, ~2.5, and ~3.4 nm,
respectively. If the labeling is uniformly distributed along the
dextran chain, and therefore uniformly distributed inside the
volume of the globular polymer, then the mean distances
between nearest neighbors for the 3.8—70k, 5.8—70k, and 58—
2M conjugates are ~2.6, ~2.9, and ~3.4 nm, respectively. This
suggests that either the hydrodynamic radii are underestimated
by approximately a factor of 2 or that the depolarization due to
the nearest neighbors will occur in <100 ps. Indeed, we observe
that the samples are depolarized to an anisotropy value of 0.16
and 0.17 within our instrument response of ~40 ps. These initial
anisotropy values correspond to depolarization cone angles of
57—58°. This suggests that the observed nanosecond anisotropy
decay is due to a phenomenon other than the FRET homotrans-
fer. A likely explanation would be rotation of the TMR dyes
that has been slowed by interactions with the dextran local
environment.

The observed depolarization is expected to be a benefit for
this methodology because it will facilitate polarization scram-
bling, reducing the effect of incomplete dipole orientation
averaging on the fluorescence signal from a single multichro-
mophoric molecule. We observed that even in the case of dried
samples there was substantial depolarization of the fluorescence,
most likely due to homotransfer between dyes.

Even when the dyes are independent when fluorescent, they
may not be independent once one or more dyes has been
damaged or bleached. Nearby dyes could photochemically react.
This would appear as occasional pairwise correlated irreversible
jumps in fluorescence intensity. If a state that causes fluores-
cence intermittency is absorptive, then it might act as an energy
transfer acceptor and result in the appearance of cooperativity
in the intermittency. This would appear as correlated multiple-
dye jumps in intensity. If either of these phenomena occurs for
the TMR—dextran conjugates, then the likelihood must be small
compared to coincidental photobleaching. The tridiagonal rate
matrix prevents such transitions from occurring by setting the
nonstepwise rate constants to zero, yet when we performed our
analysis with the rate matrix allowing multiple synchronous
blinking events, there was essentially no improvement in the
log-likelihood. Since we get a convex log-likelihood for the
majority of TMR—dextran conjugates, we take this as further
evidence that our assumptions are usually valid.

B. Trajectory Reconstruction. The Monte Carlo simulations
showed that with reasonable signal levels, trajectories could be
reconstructed with level-change identification accuracy to within
a few photons. Most of the photobleaching trajectories we
measured fit well to our HMM and showed a most-likely
number of dyes. However, in the case of a few trajectories, as
illustrated by Figure 3D, we found that the log-likelihood with
respect to the number of states was not convex. Bulk experi-
ments suggested that our assumptions of dye indistinguishability
and dye independence were valid, however trajectories such as
this one illustrate how minority components of a sample can
give substantially different behaviors. In this case, we attribute
this behavior to polymers that happen to have dyes in very close
proximity. In this case, even small geometry changes can cause
dramatic intensity and lifetime fluctuations. This will prevent
single-molecule trajectory reconstruction under the assumptions
of dye indistinguishability and independence.

There is a slight decrease in lifetime as the number of dyes
decreases. This is likely due to the increasing fraction of
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background. The background photon lifetime measured after
complete photobleaching is indicated by dye number zero. This
lifetime was much shorter than that of TMR, as expected.
However, it was also longer than that typically measured in
locations that never showed fluorescent molecules. The low
intensity of the final state reduces the reliability of lifetime
measurements. The fitting has difficulty distinguishing between
a combination of uncorrelated plus instantaneous scattering
background and a 1 ns decay. Less than 100 fluorescent photons
(=£2% of the total detected in this case) can add enough decay
to the tail of the exponential distribution to significantly alter
the evaluation of the fluorescence lifetime relative to the
instrument response. Also there may also be some contribution
due to residual fluorescence from photodamaged molecules. The
simplified HMM will gather very dim, damaged states together
with fully photobleached states in the reconstruction (see Figure
D).

If one is interested in quantifying the kinetics from the
trajectory reconstructions, then only the appropriate model will
result in Markovian dynamics and thus give meaningful numbers
for kinetic parameters that describe bleaching, blinking, multiple
damaged states, and environmental sensitivity. Though it was
successful in counting dyes and reconstructing trajectories, the
two-state model we used is apparently invalid in the presence
of photoblinking that is different from photobleaching, damaged
dyes that emit nearly as intensely as undamaged ones, envi-
ronmental sensitivity of the dye, and so forth. We have found
that the kinetics from this model are indeed non-Markovian.
Since only a small number of kinetic events are observed for
these processes in any particular trajectory, the reconstruction
is relatively insensitive to non-Markovian state dwell time
distributions. Constructing appropriate hidden Markov models
from non-Markovian state dwell-time distributions will be the
subject of future papers.

C. Dye Counting. The ability to identify all of the individual
dye levels relies on the collection of a sufficient number of
photons from each level. Intensity fluctuations within individual
levels can have a significant impact on the identification ability
as well. For these reasons, careful selection of the dye is critical,
as we have shown through information theory and simulations.
Information theory shows that dye photostability is ultimately
the limiting factor for the number of dyes that can be counted
using this method. However, the choice of model is also
important. It must be flexible enough to accommodate non-
Markovian behavior, but still be simple enough to be tractable
for several dyes. In the interest of counting dyes, we have used
an additive two-state model that allows detection of states that
may be fluctuating about an average intensity and easily
identifies short-lived dyes that might be missed by assuming
unique intensity and transition rates for each dye. The two-
state model also expedites optimization of the rate parameters
so that the number of dyes can be quickly identified.

The degree of labeling distribution is expected to depend on
the nature of the polymer being labeled and the labeling
methodology. When preparing a fluorescently labeled protein,
there are typically a small number of labeling sites. Every protein
should have the same number of active sites. If all sites have
approximately the same reactivity, then the degree of labeling
distribution is expected to follow a binomial distribution.

A = (-8

If the different labeling sites have different reactivities, then
the labeling will follow a multinomial distribution. When the
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number of available label sites is much greater than the degree
of labeling, the labeling will be randomly located among the
sites and have a Poisson distribution.

N
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This is the behavior expected for polymers with sparse labeling
such as the TMR-labeled dextran from Invitrogen.® If the
labeling of the polymer is not sparse with respect to the number
of labeling sites, then the distribution of polymer lengths can
become relevant. In this case, the labeling distribution will be
a convolution of the binomial behavior with the distribution of
the number of labeling sites.

The distinction between the 3.8 and 5.8 TMR conjugates is
easily made, demonstrating the capability of observing multi-
molecular systems of this order (Figure 7). The outlying
molecules for the 3.8 dye distribution (i.e., the three molecules
with number of TMR dyes greater than 10) are likely aggregate
dextrans included in the analysis, however, fitting to a bimodal
distribution does not provide better or significantly different
results. The ability to obtain distributions with uncertainties
smaller than a single dye indicates the strength of this HMM
technique for distinguishing any distribution with this order of
multiplicity.

There are limits to the ability of this method to determine
the degree of labeling distribution. The hidden Markov model
probability calculation is not limited to analysis of any maximum
number of states. In fact, this type of analysis has been applied
to continuous/diffusive systems with much success.’! However,
as the number of fluorophores increases, the emission rate
approaches a continuous variable (see, for example, Fiireder-
Kitzmiiller et al.>?). The first bleaching step will most often be
the limiting factor in accurately determining the number of dyes
present. As the number of dyes increases, the bleaching occurs
on an ever-faster time scale as described by eq 2. Though the
intensity of the signal also increases proportionally, the signal-
to-noise ratio that is limited by shot noise does not increase as
rapidly. At some number of dyes, the bleaching rate will be
too fast, on average, to allow for detection of the first bleaching
step. Therefore, the limit of accuracy of a dye-counting
experiment is dependent primarily on the number of photons
that a dye emits, on average, prior to photobleaching.

Under conditions of moderate excitation power, the photo-
bleaching rate is proportional to excitation intensity.384042 The
intensity range for the experiments reported here was (5—20)
x 103 W/cm?. According to Dittrich and Schwille, TMR in
water (air atmosphere) reaches saturation of one photon (514
nm) excitation near power densities of 2 x 10° W/cm?, well
above the laser intensities used in this study. Therefore, no
power-dependent fluorescence quenching is expected or was
observed.

Combining the results of information theory, simulations, and
single-molecule measurements of aggregated 70 kD dextran and
the 58 TMR-labeled 2000 kD dextran, we are confident that
this technique can be extended to systems with multiplicity
orders of 30 and higher. At these levels, we might expect to
under-count the number of dyes because of the rapid photo-
bleaching of the first dye or two. Having a good estimate of
the bleaching rate constants would allow a correction to be
applied to the final distribution based on the fraction of the time
the dyes would be expected to photobleach before delivering
enough information to identify that first level.

Photobleaching dye counting can be used to calibrate
photometric experiments. With careful calibration of dye
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intensity, complete photobleaching of the fluorescence of the
system under study would not be required to have high
confidence in the number of molecular constituents. For data
collected on a particular day, the background and individual
dye intensities are the same for every molecule within some
experimental uncertainty. By analyzing approximately 10
molecules, these values can be ascertained and analysis can
proceed by simply observing the maximum intensity of each
molecule. The implications of this result are that one may use
fluorescence imaging strategies either by scanning APDs or
CCD to simultaneously collect data for >100 molecules.

In the case where molecules are free to diffuse, the analysis
would require the addition of diffusive terms to the HMM.
Distinction between individual dye levels would require resolu-
tion of individual photons within a fluorescence burst. Discrete
intensity steps associated with blinking would need to be
distinguished from continuous changes resulting from diffusion.
Observation of a few discrete steps would allow the initial
instantaneous brightness and step size to be determined. The
ratio of these quantities is the dye number. This approach would
make this technique applicable to various diffusive experiments
or to flowing experiments in micro and nanofluidic devices.

D. Comparison of HMM to Other Methods. HMM analysis
provides a photon-by-photon reconstruction of the data. These
reconstructions allow one to determine many of the parameters
of interest in single-molecule trajectories (e.g., state-dependent
dwell times, fluorescent lifetimes, absence of correlation within
a particular state) with more accuracy than any other proposed
technique. HMM analysis of a photon stream benefits from the
statistical simplifications that occur because of the Markov
property.!9=2153 The Markov chain of molecular states is not
directly observed. However, since each state has associated with
it emission probabilities and transition probabilities, this hidden
sequence can be reconstructed from the photon stream if enough
information is present in the entire trajectory to distinguish the
states.

Recently, a method to analyze the changepoints of photon
trajectories based on likelihood calculations of photon emission
rates was proposed.> This technique when compared to hidden
Markov models indeed overcomes the issue of model initializa-
tion. However, computation time using this technique scales as
N?pNp In(Np). Nep is the number of state-to-state changepoints
and N, is the number of photons, which can be greater than 10°
for multiple fluorophores. On the other hand, hidden Markov
models calculate the probability of a model as N,N, where N is
the number of states in the model. Including an optimization
step requiring 1000 iterations for the HMM analysis results in
far shorter computation times even when linearizing the
changepoints technique by analyzing overlapping sections of
1000 photons as suggested by Watkins and Yang. In addition
to being computationally slower, the changepoints analysis does
not directly return a trajectory reconstruction, transition rates,
or state connectivity, that is, kinetic pathways, and is not
sensitive to short dwell times within a particular state. In fact,
for their test simulations, they specifically eliminated short dwell
times. The dwell time distributions for directly connnected states
are functions that monotonically decrease from time zero
implying that a large number of dwell times will be short. HMM
analysis is capable of detecting state occupations of a single
interphoton time should there be adequate statistical information
to justify it. Moreover, molecular parameters are optimized to
include statistically weighted contributions from transitions that
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may have occurred but that may not have provided enough
information to justify assignment at a 95% or greater confidence
level.

V. Conclusions and Further Work

Bulk experiments such as dynamic light scattering are often
used to identify sizes of molecular components in solution and
extract number distributions. Heterogeneity, particle shape, and
sample contamination often convolute the results of these
experiments making an accurate assessment difficult. On the
single-molecule level, there are many experiments that involve
multiple molecular copies or a variety of interacting components.
The ability to identify and distinguish these components is of
utmost importance to understanding the results of these experi-
ments.

We have developed hidden Markov model analysis algorithms
that directly determine input model probability and reconstruct
the most likely state-to-state trajectory on a photon-by-photon
basis. In this report, we have shown that HMM analysis operates
near the information—theoretical limit to provide the highest
possible resolution. Applying HMM analysis to photobleaching
of multiply labeled dextran, a system with a known average
degree of labeling, we showed that one is able to accurately
determine the number of molecular constituents, making this
method applicable to many experiments related to aggregation,
multimolecular, or assembly processes. From simulations and
information theory, we have shown it is possible to extend our
experimental results to systems with much higher multiplicity
(as high as 30) and provided a framework for determining when
the information content is sufficient for making certain infer-
ences.

We analyzed our data using the simplest two-state model
possible. The HMM reconstructed trajectories provide state-to-
state dwell times. Dwell time analysis (not shown here) using
this two-state model resulted in non-Makovian dynamics.
Analysis of the multiexponential (non-Markovian) dwell time
results is currently underway to identify the nature of the hidden
states. We aim to determine whether oxygen or triplet states
play a role in these TMR —dextran photobleaching dwell times
by studying these polymers in the presence of reducing agents
(dithiolthriotol and S-mercaptoethanol) and triplet quenchers
(cystamine). These results will be the subject of a forthcoming

paper.

Acknowledgment. This work was supported by the NIH
Ruth L. Kirschstein NRSA fellowship F32GM072328, Research
Corporation Grant, and NIH ROIGMO071684. Edward Castner
provided use of equipment to acquire bulk solution data.

References and Notes
(1) Moerner, W. E. J. Phys. Chem. B 2002, 106, 910—927.
(2) Michalet, X.; Weiss, S. C. R. Phys. 2002, 3, 619—644.
(3) Lu, H. P.; Xun, L.; Xie, X. S. Science 1998, 282, 1877—1882.
(4) Flomenbom, O.; et al. Proc. Natl. Acad. Sci. 2005, 102, 2368—
2372.
(5) Ha, T.; Zhuang, X.; Kim, H. D.; Williamson, J. W. O. J. R.; Chu,
S. Proc. Natl. Acad. Sci. 1999, 96, 9077—9082.
(6) Talaga, D. S.; Lau, W. L.; Roder, H.; Tang, J.; Jia, Y.; DeGrado,
W. F.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. 2000, 97, 13021—13027.
(7) Jia, Y.; Talaga, D. S.; Lau, W. L.; Lu, H. S. M.; DeGrado, W. F.;
Hochstrasser, R. M. Chem. Phys. 1999, 247, 69—83.
(8) Rhoades, E.; Gussakovsky, E.; Haran, G. Proc. Natl. Acad. Sci.
2003, 700, 3197—3202.
(9) Lakadamyali, M.; Rust, M. J.; Babcock, H. P.; Zhuang, X. Proc.
Natl. Acad. Sci. 2003, 100, 9280—9285.
(10) Collins, S. R.; Douglass, A.; Vale, R. D.; Weissman, J. S. Public
Library of Science Biology 2004, 2, 1582—1590.
(11) Christ, T.; Petzke, F.; Bordat, P.; Herrmann, A.; Reuther, E.; Mullen,
K.; Basche, T. J. Lumin. 2002, 98, 23—33.
(12) Nguyen, V. T.; Kamio, Y.; Higuchi, H. EMBO J. 2003, 22, 4968 —
979.

Messina et al.

(13) Koo, E. H.; Jr., P. T. L.; Kelly, J. W. Proc. Natl. Acad. Sci. 1999,
96, 9989—9990.

(14) Talaga, D. S. J. Phys. Chem. A 2006, 110, 9743—9757. DOI:
10.1021/jp062192b.

(15) Flomenbom, O.; Klafter, J.; Szabo, A. Biophys. J. 2005, 88, 3780—
3783.

(16) Bopp, M. A.; Jia, Y.; Li, L.; Cogdell, R. J.; Hochstrasser, R. M.
Proc. Natl. Acad. Sci. 1997, 94, 10630—10635.

(17) Neuweiler, H.; Schulz, A.; Boehmer, M.; Enderlein, J.; Sauer, M.
J. Am. Chem. Soc. 2003, 125, 5324—5330.

(18) Kuno, M.; Fromm, D.; Hamann, H.; Gallagher, A.; Nesbitt, D. J.
Chem. Phys. 2001, 115, 1028—1040.

(19) Levinson, S. E.; Rabiner, L. R.; Sondhi, M. M. Bell Syst. Tech. J.
1983, 62, 1035—1074.

(20) Rabiner, L. R.; Juang, B. H. IEEE ASSP Mag. 1986, 3, 4—16.

(21) Rabiner, L. R. Proc. IEEE 1989, 77, 257—286.

(22) Durbin, R.; Eddy, S. R.; Krogh, A.; Mitchison, G. Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids;
Cambridge University Press: New York, 1998.

(23) Hughes, J. P.; Guttorp, P.; Charles, S. P. J. R. Stat. Soc. C 1999,
48, 15—30.

(24) Scott, S. L. J. Am. Stat. Assoc. 2002, 97, 337—351.

(25) Elliott, R. J.; van der Hoek, J. Finance Stochastics 1997, 1, 229—
238.

(26) Andrec, M.; Levy, R. M.; Talaga, D. S. J. Phys. Chem. A 2003,
107, 7454—7464.

(27) Lawrence, J. R.; Turnbull, G. A.; Samuel, I. D. W.; Richards, G.
J.; Burn, P. L. Opt. Lett. 2004, 29, 869—871.

(28) Monshouwer, R.; Abrahamsson, M.; van Mourik, F.; van Grondelle,
R. J. Phys. Chem. B 1997, 101, 7241—7428.

(29) Purich, D. L.; Kristofferson, D. Adv. Protein Chem. 1984, 36, 133-
212.

(30) Augusteyn, R. C. Clin. Exp. Optom. 2004, 87, 356—366.

(31) Shiloff, B. A.; Behrens, P. Q.; Kwan, S.-W.; Lee, J. H.; Abell, C.
W. Eur. J. Biochem. 1996, 242, 41—50.

(32) Tripputi, P.; Emanuel, B. S.; Croce, C. M.; Green, L. G.; Stein, G.
S.; Stein, J. L. Proc. Natl. Acad. Sci. 1986, 83, 3185—3188.

(33) Lee, L.; Kaplan, I. B.; Ripoll, D. R.; Liang, D.; Palukaitis, P.; Gray,
S. M. J. Virol. 2005, 79, 1207—1214.

(34) Fujino, N.; Karino, I.; Kobayashi, J.; Kuramoto, K. J. Electrochem.
Soc. 1996, 143, 4125—4128.

(35) HMM analysis code and LabVIEW VIs used in these experiments
are available for download at http://www.singlemolecule.net.

(36) Brand, L.; Eggeling, C.; Zander, C.; Drexhage, K. H.; Seidel, C.
A. M. J. Phys. Chem. A 1997, 101, 4313—4321.

(37) Press, W. H.; Teukolsky, W. A.; Vetterling, W. T.; Flannery, B. P.
Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.;
Cambridge University Press: New York, 1988.

(38) Eggeling, C.; Widengren, J.; Rigler, R.; Seidel, C. A. M. Applied
Fluorescence in Chemistry, Biology and Medicine; Springer-Verlag: Berlin,
1998.

(39) Schiitz, G. J.; Gruber, H. J.; Schindler, H.; Schmidt, T. J. Lumin.
1997, 72—74, 18—21.

(40) Eggeling, C.; Widengren, J.; Rigler, R.; Seidel, C. A. M. Anal.
Chem. 1998, 70, 2651—2659.

(41) Peck, K.; Stryer, L.; Glazer, A. N.; Mathies, R. A. Proc. Natl. Acad.
Sci. 1989, 86, 4087—4091.

(42) Dittrich, P. S.; Schwille, P. Appl. Phys. B 2001, 73, 829—837.

(43) van Dijk, M. A.; Kapitein, L. C.; van. Mameren, J.; Schmidt, C.
F.; Peterman, E. J. G. J. Phys. Chem. 2004, 108, 6479—6484.

(44) Ko, D.-S. J. Chem. Phys. 2004, 120, 2530—2531.

(45) Hernando, J.; van der Schaaf, M.; van Dijk, E. M. H. P.; Sauer,
M.; Garcxcla-Paraj6, M. F.; van Hulst, N. F. J. Phys. Chem. 2003, 107,
43-52.

(46) Selwyn, J. E.; Steinfeld, J. 1. J. Phys. Chem. 1972, 76, 762—774.

(47) Talaga, D. S.; Jia, Y.; Bopp, M. A.; Sytnik, A.; DeGrado, W. A.;
Cogdell, R. J.; Hochstrasser, R. M. Single Molecule Spectroscopy—Nobel
Conference Lectures; Springer-Verlag: Berlin, 2001; Vol. 67.

(48) del Monte, F.; Levy, D. J. Phys. Chem. B 1999, 103, 8080—8086.

(49) Weiss, M.; Elsner, M.; Kartberg, F.; Nilsson, T. Biophys. J. 2004,
87, 3518—3524.

(50) Further information on the multiply labeled dextrans can be found
at Invitrogen’s Molecular Probes website: http://probes.invitrogen.com/
handbook/sections/1405.html and http://probes.invitrogen.com/media/pis/
mp01800.pdf.

(51) Roweis, S.Advances in Neural Processing Systems 12: Proceedings
of the 1999 Conference on Neural Information Processing Systems (NIPS),
MIT Press: 1999; pp 782—788.

(52) Fiireder-Kitzmiiller, E.; Hesse, J.; Ebner, A.; Gruber, H. J.; Shiitz,
G. J. Chem. Phys. Lett. 2005, 404, 13—18.

(53) Derin, H.; Kelly, P. A. Proc. IEEE 1989, 77, 1485—1510.

(54) Watkins, L. P.; Yang, H. J. Phys. Chem. B 2005, 109, 617—
628.



