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Single solid-state nanopores find increasing use for electrical detection and/or manipulation of
macromolecules. These applications exploit the changes in signals due to the geometry and electrical
properties of the molecular species found within the nanopore. The sensitivity and resolution of such
measurements are also influenced by the geometric and electrical properties of the nanopore. This
paper continues the development of an analytical theory to predict the electrochemical impedance
spectra of nanopores by including the influence of the presence of an unfolded protein using the
variable topology finite Warburg impedance model previously published by the authors. The local
excluded volume of, and charges present on, the segment of protein sampled by the nanopore are
shown to influence the shape and peak frequency of the electrochemical impedance spectrum. An
analytical theory is used to relate the capacitive response of the electrical double layer at the surface
of the protein to both the charge density at the protein surface and the more commonly measured
zeta potential. Illustrative examples show how the theory predicts that the varying sequential regions
of surface charge density and excluded volume dictated by the protein primary structure may allow
for an impedance-based approach to identifying unfolded proteins. © 2013 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4819470]

I. INTRODUCTION

Individually fabricated solid-state nanopores2, 3

have been used as synthetic systems for ion-channel
studies,4–8 single molecule sensing,9–11 DNA resistive pulse
measurements,2, 11 and DNA sequencing.12 Resistive pulse
measurements2, 11 apply a fixed DC potential and measure
the current vs. time. Investigators typically further reduce the
event data by binning the average current drop and event du-
ration into histograms. Recently, electrochemical impedance
spectroscopy (EIS),13–15 which measures the impedance as
a function of frequency of applied AC potential, has been
used to analyze nanoporous structures.1 Since the EIS signal
is a measure of the electrokinetic transport of solutions
through nanopores, it is sensitive to the surface properties
and geometries of these nanopores.1, 16, 17 Vitarelli et al.1

have shown that by measuring the impedance spectrum of
nanochannels in a conducting solution it is possible to obtain
the nano channel geometry and the double layer specific
differential capacitance at their walls. The framework of
that model has sufficient flexibility to enable its extension
to include the influence of large molecular species, such as
proteins, within the nanopore.

This paper extends the Variable Topology finite Warburg
(VTW) impedance model1 to include the effect of an unfolded
protein within the nanopore, see Fig. 1. The protein was mod-
eled as a variable-radius tube with a surface-charge density
that, when in a conducting solution, produces an electrical
double layer specific differential capacitance along its surface.

a)Also at Department of Chemistry and Chemical Biology Rutgers Univer-
sity, 610 Taylor Road, Piscataway, New Jersey 08854, USA.

b)Electronic mail: talagad@montclair.edu. URL: http://www.talaga.name.

Most proteins are globular, however proteins have been shown
to unfold inside nanopores,11 thus a tubular model was cho-
sen. Most proteins have multiple charges of both signs, lead-
ing to the common occurrence that a given protein will have a
point at which the charges present in the nanopore cancel cre-
ating no net force for translocation.11 At these stall points the
protein will persist in the nanopore allowing for the measure-
ment of several EIS frequencies before the protein escapes the
trap through thermal motions. For proteins that translocate too
fast to resolve,11 one can imagine a nanomanipulation exper-
iment in which one end of the protein is attached to an AFM
tip and slowly threaded through the nanopore. The location
of the peak frequency in the imaginary component of the EIS
spectrum should allow for coarse-grain resolution of sequence
information through the EIS dependence on the local charge
and excluded volume enabling rapid identification of single
proteins by nanopores that are short compared to the protein.
Note that this approach depends on the size and charge hetero-
geneity of polypeptide and could be extended to any polymer
with similar charge and size heterogeneity. Polynucleic acids,
by contrast, have very little heterogeneity in charge and size
and would not be amenable to this approach.

A successful model of the impedance spectrum of an un-
folded protein inside a nanopore must reproduce several phys-
ical limits. The model should show physically correct high
and low frequency limits. In the low frequency limit the model
should become purely resistive. The impedance of a capacitor
is inversely proportional to the applied frequency, thus in the
high frequency limit the model’s impedance should approach
zero as does an R ‖ C circuit. EIS spectra for various protein
radii should show that when the radius of the protein within
the nanopore is increased to encompass the entire nanopore
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FIG. 1. Experimental schematic for a nanopore EIS experiment on a single unfolded protein molecule. The nanopore contains an electrolyte (not shown). An
electrostatically elongated protein traverses a nanopore fitted with electrodes that apply a swept-frequency AC potential (double lines at right) and measure the
phase and amplitude of EIS current (single lines at left). Each colored sphere on the protein is an amino acid (red = acidic, blue = basic, green = hydrophilic,
gray = hydrophobic.) As the protein passes through the nanopore the groupings of amino acids will be sampled. The amount of excluded volume and surface
charge density within each grouping will affect the overall impedance. Geometric variables used in the model are shown in the diagram: L = length of nanopore,
rn(x) = radius of nanopore, x = variable position along axis of pore. The geometric and sequence related variables are mapped into a ladder differential equation1

describing the equivalent circuit displayed at right.

the EIS spectrum approaches that of an ideal capacitor. When
the radius of the protein is set to zero the model should reduce
to the original VTW model.

The model connecting protein properties to EIS spectra
requires relating amino acid and nanopore surface charge den-
sities to specific differential capacitances. The most common
way that protein surface electrical properties are experimen-
tally measured is through the ζ -potential, which is interpreted
as being the electrostatic potential evaluated at a distance, rζ ,
from the protein corresponding to the hydrodynamic slip sur-
face. Therefore, this paper also presents a new approach to
relate the ζ -potential to the protein double layer specific dif-
ferential capacitance. The Poisson-Boltzmann equation was
numerically solved by a second-order difference method to
obtain the double layer potential as a function of distance and
surface charge density, which was then expressed in terms
of the ζ -potential18–21 enabling a nanopore EIS approach to
single molecule or even local chain measurements of the
ζ -potential.

II. RESULTS AND DISCUSSION

A. ZVTW impedance model for a nanopore occupied
by a protein

Theoretical treatment of the nanopore without protein be-
gan with a differential equation whose solution was previ-
ously used to model the influence on EIS of the geometry and
double layer specific differential capacitance of nanopores.1

The diagram at the right of Figure 1 shows a network of in-
finitesimal capacitive and resistive elements linked in a net-
work to describe just the contribution of nanopore to the
impedance. The resistors account for the position dependence
of the ionic conductivity through the pore while the capaci-
tors account for the influence of the double layer at the pore
walls. One pair of the infinitesimal capacitors and resistors
is split off (�Z) of the whole circuit (Z) to facilitate solution

of the network as a ladder differential equation. Expressing
the combination of elements according to the circuit rules and
taking the limit as the number of elements goes to infinity and
the size of the elements goes to zero, leads to the following
differential equation:

Z′ + iωC ′Z2 − R′ = 0, (1)

where

R′ = dR

dx
= 1

πr2
n (x)κn

and C ′ = dC

dx
= C ′(x) = 2πrn(x)C̃n.

(2)
Here i = √−1, ω is the angular frequency of the AC volt-
age, x is the coordinate along the length of the nanopore.22

The differential impedance (Z′) includes contributions from
the differential capacitance (C′) and resistance (R′) that de-
pend parametrically on the nanopore radius rn(x). C̃n is the
double-layer specific differential capacitance of the solution-
nanopore wall interface, and κn is the solution conductivity in-
side the nanopore, which is typically found to be higher than
that of the bulk, κ .23–27 Swapping the order of the resistive
and capacitive infinitesimal elements gives the same result:
Eq. (1). In this formulation, a nanopore of length zero should
have zero impedance, providing the boundary condition,
Z(0) = 0. Additional circuit elements to account for the rest
of the apparatus will be introduced below.

For a constant radius, rn(x) = rn, the solution to Eq. (1)
is22

Zcyl(ω) = Rcyl
tanh

[√
iωτcyl

]√
iωτcyl

, (3)

with

Rcyl = L

πr2
n κn

, (4a)

τcyl =Rcyl Ccyl = 2L2C̃n

rnκn
. (4b)
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An equivalent solution for the network solution can be ob-
tained using a continued fraction approach.22 Solutions for
other geometries (cone, hourglass, lozenge, etc.) are readily
obtained from Eq. (1) after replacing r(x) with the appropri-
ate piecewise linear or quadratic function.1

The strong electric fields inside nanopores can unfold and
elongate proteins.11 Consider an elongated and unfolded pro-
tein that is traversing the nanopore; the nanopore electrical
response will be dominated by the influence of the only por-
tion of the protein within the electrically biased region of the
nanopore. To calculate the impedance of the nanopore-protein
system, take the protein segment of length L inside the pore to
have effective radius rp and a uniform effective surface charge
density. The presence of the protein increases the real part
of the nanopore impedance by reducing the volume of elec-
trolyte solution in the nanopore. Consider two coaxial cylin-
ders, with the protein being the inner cylinder with radius rp

and the nanopore being the nanopore with radius rn then the
cross sectional area available for fluid flow between them is
π (r2

n (x) − r2
p (x)). The surface charge density on the protein

adds a specific differential capacitance to the system, with
the total capacitance due to the protein being 2πrp(x)C̃p(x)L.
Taking the specific differential capacitance on the surface of
the protein to be additive with that of the nanopore, Eq. (2)
becomes

R′ = dR

dx
= 1

π
(
r2

n (x) − r2
p (x)

)
κn

and

(5)
C ′ = dC

dx
= 2π (rn(x)C̃n + rp(x)C̃p(x)).

The capacitors are additive since parallel capacitors are ad-
ditive and since the double layers on the surface of the pro-
tein and on the surface of the nanopore are in parallel. This
however, is not true in the low concentration limit where the
double layers on the surface of the protein and on the sur-
face on the nanopore overlap. This occurs when the Debye
lengths become comparable to the space between the protein
and nanopore.28, 29 In nanopore experiments the electrolyte is
not at the low concentration limit.

For constant effective radii, rn(x) = rn, rp(x) = rp and
constant protein double-layer specific differential capaci-
tance, C̃p(x) = C̃p the solution to Eq. (1) with the definitions
in Eq. (5) for the impedance of a cylindrical nanopore con-
taining a protein becomes

Zcyl+p(ω) = Rcyl+p
tanh

[√
iωτcyl+p

]√
iωτcyl+p

(6)

with

Rcyl+p = L

π
(
r2

n − r2
p

)
κn

, (7a)

τcyl+p =Rcyl+p Ccyl+p = 2L2(C̃nrn + C̃prp)(
r2

n − r2
p

)
κn

. (7b)

In Eq. (5) the protein double layer specific differential
capacitance C̃p is independent of x. Each amino acid residue
will, however, have a different surface charge density and thus
produce a different specific differential capacitance. Thus, the

specific differential capacitance shown here is the effective
average of all the residues inside the nanopore. By allow-
ing C̃p to vary with x one may solve the equation piecewise
enabling one to obtain the variation of EIS with protein se-
quence. C̃n is taken to be independent of x since nanopores
fabricated from homogeneous solid state materials should
have a uniform surface charge density.

B. Limiting behavior of the new model

Equations (7a) and (7b) reduce to Eqs. (4a) and (4b) when
the radius of the protein, rp, is zero; i.e., there is no protein
in the nanopore. Equation (6) reduces to the proper low fre-
quency limit, that of an ideal coaxial electrolyte resistor,

lim
ω→0

Zcyl+p(ω) = L

πκn
(
r2

n − r2
p

) = Rcyl+p, (8)

see, also, Eq. (7a). The high frequency limit of Eq. (6) and its
derivative are both zero:

lim
ω→∞ Zcyl+p(ω) = 0, lim

ω→∞ Z′
cyl+p(ω) = 0. (9)

The peak frequency is found by maximizing −Im[Zcyl+p(ω)]
from Eq. (6) giving

ωpeak ≈ 2.54065/τcyl+p. (10)

C. Incorporating the influence of the substrate

The nanopore is fabricated within a substrate, often sili-
con nitride, its capacitance is given by

Cs = εsε0As/L, (11)

where ε0 is the permittivity of free space, εs is the dielec-
tric constant of the substrate, As = π (r2

s − r2
n ) is the cross-

sectional area of the cylindrical substrate, with rs being the
substrate’s radius, and L is the thickness of the substrate and
the length of the nanopore through the substrate.2, 3, 30 The
impedance of this substrate, assuming an ideal capacitor, is
given by

Zs = 1

iωCs
. (12)

Since the substrate and nanopore are in parallel, the system
impedance is the parallel circuit addition of Eqs. (6) and (12):

Zsys = Zcyl+p ‖ Zs. (13)

A final circuit element could be added to the model to account
for the dielectric capacitance of the protein. However, such an
element has negligible affect on the EIS spectrum.

Figure 2 shows a Nyquist plot of Eq. (13) for several
protein radii and a fixed nanopore radius. The protein sizes
were chosen to correspond to polyglycine, polyleucine, and
polytryptophan. As the protein radius approaches that of the
nanopore, the EIS spectrum approaches that of an ideal capac-
itor, as expected. The system contains a tubular protein within
a hole in a substrate. As the tube fills the hole, the substrate
becomes blocked, and thus is simply a flat substrate, which
would behave as a capacitor.
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FIG. 2. The effect on EIS spectra of varying protein radius, rp using
Eq. (13) with L = 9.5 nm, rn = 0.438 nm, rs = 50 μm, κ=1.09 S/m (100 mM
KCl), C̃n=1 mF/m2, C̃p=10 mF/m2, and εs = 6. The black, red, orange,
and green lines correspond to the protein-free pore (rp = 0 nm), polyglycine
(rp = 0.224 nm), polyleucine (rp = 0.375 nm), and polytryptophan
(rp = 0.437 nm), respectively. In the limit that the radius of the protein is
equal to that of the nanopore, the response becomes that of an ideal capaci-
tor.

Figure 3 shows the negative imaginary impedance from
Eq. (13) vs. frequency for several different values of the
protein specific differential capacitance. As the protein is
traversing the nanopore, different regions on the protein will
have varying amounts of surface charge density. This surface
charge density produces the double-layer specific differential
capacitance when the protein is in a conducting solution. The
value of this capacitance can be obtained from the time con-
stant (Eq. (7b)) in Eq. (13).

Equations (7a) and (7b) are defined by six physical pa-
rameters, rp, rn, C̃p, C̃n, L and κn. However, these equations
only give two experimentally measurable parameters, τ cyl+p

and Rcyl+p. To obtain all six parameters, first a calibration
of the nanopore must be performed to obtain the geometric
parameters of the nanopore using Eqs. (4a) and (4b) as pre-
viously shown.1 After the three geometric parameters of the
nanopore and the nanopore conductivity are known, then the
protein parameters may be obtained.

Figure 3 also illustrates the influence of the substrate re-
sponse on the resolution of EIS with respect to the charge on
the protein. The response of the substrate is dominated by the
capacitance of the thin membrane surrounding the nanopore.
The left panel shows a substrate geometry consistent with a
thin nanopore sculpted from a larger nanopore drilled through
a thick substrate (i.e., focussed ion beam drilling followed by
noble gas ion sculpting2, 3). The right panel shows the EIS
resolution of different surface charges by nanopore drilled
through a thin substrate (i.e., TEM drilling30). The nanopore
is identical in both. The difference is that the thin portion of
the substrate where the nanopore is located has a larger sur-
face area in the right panel case than in the left panel case.
The additional capacitance of the larger area of the mem-
brane holding the nanopore compresses the differences in the
characteristic response time that arise due to the changes in
polypeptide surface charge. This result suggests that the ge-
ometry of the substrate surrounding the nanopore may signif-
icantly influence the sensitivity and resolution of EIS-based
nanopore experiments. In particular the nanopore geometry
resulting from focussed ion beam drilling through thicker sub-
strate windows followed by noble gas ion beam sculpting to
obtain the nanopores may have significant advantages over
TEM drilling as currently implemented. The surface area of
the thin membrane containing the nanopore must be mini-
mized while still maintaining sufficiently low resistance so as
to not contribute significantly to the transient impedance drop
across the device.

D. ζ -potential and numerical solutions to the specific
differential capacitance

In this section an expression for the ζ -potential18–21 and
double layer specific differential capacitance for a long tube is
developed. Both the double layer specific differential capac-
itance of a protein and its ζ -potential arise from the surface
charge density and depend on the solution conditions through

FIG. 3. Effect of membrane structure on EIS resolution of the protein surface charge density. The panels differ only by the radius of the thin membrane
containing the nanopore. Left: Membrane radius rs = 200 nm. Right: rs = 500 nm. The insets show schematically the changes in the membrane holding the
nanopore. The peak angular frequency moves to lower values with lower values of C̃p. The additional capacitance of the larger area of the membrane holding
the nanopore compresses the differences in the characteristic response time that arise due to the changes in polypeptide surface charge. The negative imaginary
component of Eq. (13) was plotted with L = 60 nm, rn = 4 nm, rp = 1.5 nm, the experimentally determined1 nanopore double layer specific differential
capacitance C̃n = 1 mF/m2, the numerically calculated protein double layer specific differential capacitance C̃p = 2.0, 3.8, 5.6, 9.2 F/m2, blue, red, yellow,
green, respectively, with σ = 0.1, 0.2, 0.3, and 0.5 C/m2 and the corresponding ζ -potentials of 29, 38, 41, and 44 mV. The ζ -potential was calculated by
numerically solving Eq. (16) and evaluating at the slip plane, with εs = 6 (silicon nitride), T = 297 K, and κ=1.09 S/m (100 mM KCl), εs = 80. The slip plane
was taken to be rζ = 0.7 nm from the protein, or size of one hydrated counter-ion. C̃p was calculated from Eq. (23) by numerically solving Eq. (16) evaluating
the potential at the protein surface, then numerically differentiating with respect to the surface charge density.
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the pH dependence of the protein ionization state and through
the double-layer dependence on the the electrolyte concentra-
tion via the Debye length,

λD =
(

εrε0 kBT∑N
i=1 n0

i q2
i

)1/2

. (14)

Since both C̃p and the ζ -potential are related to the sur-
face charge density, determination of any one of the three
quantities allows the other two to be determined. Since the ζ -
potential is a routinely measured quantity it would be invalu-
able to have an expression to calculate the double-layer spe-
cific differential capacitance or surface charge density from
the ζ -potential. EIS is sensitive to the local specific differ-
ential capacitance, thus enabling, in principle, a method to
measure the local ζ -potential values of a long heterogeneous
polymer.

Beginning with Poisson-Boltzmann equation13, 31 for a
long cylinder, where the potential is independent of the length
and angular coordinate,

1

r

d

dr
r
d�(r)

dr
= − q

ε0εr

∑
i

n0
i zi exp

[−ziq�(r)

kBT

]
, (15)

where � is the potential, kB is Boltzmann’s constant, T is ab-
solute temperature, q is the elementary charge, z is the va-
lency, ni is the species density in the lamina, and n0

i is the
bulk species density infinitely far from the potential source.
Consider simplifying this for a 1:1 electrolyte such as KCl,
where n0

1 = n0
2 = n0, z1=1, and z2 = −1:

1

r

d

dr
r
d�(r)

dr
= 2qn0

ε0εr
sinh

[
q�(r)

kBT

]
. (16)

For potentials such that q� is less than kBT, around 20 mV,
one can linearize Eq. (16) by retaining the first term of the
series expansion of sinh:

1

r

d

dr
r
d�(r)

dr
= 2q2n0

ε0εrkBT
�(r) = λ−2

D �(r), (17)

where λD is the Debye length. With the standard boundary
conditions:

lim
r→∞ �(r) = 0, (18)

that is, as the distance from the surface is large the potential
approaches zero. Also,

σ = −εrε0

(
d�

dr

)
r=rp

, (19)

where σ is the surface charge density, and rp is the tube radius
of the protein, which yields

�(r) = σλDK[0, r/λD]

εrε0K[1, rp/λD]
r ≥ rp, (20)

where K is the modified Bessel function of the second kind.
The ζ -potential can be found by evaluating �(r) at the slip
plane, that is at r = rp + rζ :

ζ = σλDK[0, (rp + rζ )/λD]

εrε0K[1, rp/λD]
, (21)

where rζ is the distance from the surface of the tube to the slip
plane. Using a measured ζ -potential and inverting the above
equation, one can calculate the net surface charge density on
the tube or protein,

σ = ζεrε0K[1, rp/λD]

λDK[0, (rp + rζ )/λD]
. (22)

Each amino acid residue will contribute a given amount of
surface charge density; the net surface charge density be-
ing the weighted sum of the contribution from each residue,
weighted by the surface area of the residue.

Next consider the specific differential capacitance due to
the electrical double layer on the surface of the tube. The spe-
cific differential capacitance is related to the surface charge
density by

C̃ = dσ

d�0
, (23)

where �0 = �(rp) is the potential at the surface of the
protein.32 Solving Eq. (20) for the surface charge density,
while evaluating this at the radius of the protein

σ = �0εrε0/λDK[1, rp]

λDK[0, rp/λD]
, (24)

then differentiating with respect to the surface potential yields
the electrical double-layer specific differential capacitance:

C̃ = εrε0K[1, rp/λD]

λDK[0, rp/λD]
. (25)

Equation (25) represents the linearized case and is inde-
pendent of the surface potential. To obtain a surface charge
density dependent specific differential capacitance, Eq. (16)
was solved numerically by a second-order finite difference
method33 as a function of σ and rp. Direct substitution ver-
ified convergence and showed an error of less than 1 ppm.
The resulting potential was numerically differentiated with re-
spect to σ at rp to obtain the specific differential capacitance
through Eq. (23):

1

C̃
≈ �0(σ + �σ ) − �0(σ − �σ )

2�σ
. (26)

E. Transient analysis

The sensitivity to charge and volume sequence differ-
ences, as illustrated in Figs. 2 and 3, suggested that coarse-
grain sequence information may be accessible from EIS mea-
surements made in such a way as to probe local segments of
the polypeptide chain. It was assumed that the position of the
protein is static at each instance of measurement, and that
the applied AC field is weak resulting in no nanopore elec-
tric field enhancement of ionization (�pKa = 0). Volume in
the pore was determined by summing the amino acid residue
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(a)

(c) (d)

(b)

FIG. 4. Dependence of EIS parameters and local ζ -potential on the local
protein volume and charge as a function of amino acids traversed during un-
folded linear human αSyn translocation starting with the C-terminus. The
translocation coordinate corresponds to the number of amino acids that have
passed completely through the L = 9.5 nm nanopore (25 amino acids inside).
Panel (a) shows the excluded volume; panel (b) shows the net charge on the
amino acids present in the nanopore. The fluctuations in local excluded vol-
ume and net charge arise because of the different amino acids at different
locations in the sequence. Panel (c) shows the changes in peak EIS frequency
during translocation. The ends of the translocation coordinate show that the
peak increases to that of the protein-free nanopore. The peak in the middle
corresponds to the NAC region of αSyn, which has relatively little charge.
Panel (d) shows the local protein ζ -potential as a function of number of amino
acids traversed calculated from Eq. (21) using rn = 4 nm, C̃n =1 mF/m2,
T = 297 K, κ = 1.09 S/m (100 mM KCl), εs = 80, and rζ = 0.7 nm
(∼ the diameter of one hydrated counter-ion).

volumes,11, 34 and using pKa data35 in Eq. (27):

Qprot =
n+ξ∑
j=ξ

± (
10±(pH−pKaj −�pKaj ) + 1

)−1
. (27)

The translocation coordinate is defined as the number of
amino acids that have passed entirely through the nanopore.
The average value of the length of an amino acid in an
extended β-strand structure is about 0.38 nm. Therefore, a
nanopore of length L = 9.5 nm will contain approximately
25 amino acids. Once inside the nanopore, the protein seg-
ment EIS response depends on the surface charge density and
size of the amino acids in the nanopore and not on their rela-
tive positions in the nanopore.

Panels (a) and (b) in Fig. 4 show the excluded volume
and the absolute value of the charge of human αSyn in the
nanopore as a function of number of amino acids that have tra-
versed the nanopore starting from the C-terminus. The relative
magnitude of the fluctuations increases for shorter nanopores
due to there being fewer amino acids present inside it. Panel
(c) in Fig. 4 shows the peak frequency of the EIS curve as
a function of number of amino acids that have traversed the
nanopore. Notice at the end points of the translocation, the
peak frequency appears to diverge. This feature shows the en-
trance and exit of the protein from the nanopore and the return
of the peak frequency to the empty nanopore value. With no
protein in the nanopore the time constant is small yielding a
large peak frequency. As the double-layer specific differen-
tial capacitance in the nanopore from the protein increases
the time constant also increases, thus decreasing the peak fre-
quency. The peak frequency rises again near the center of
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FIG. 5. Sequence effects on EIS. Human αSyn and βSyn are shown in black
and red, respectively, while mouse αSyn is shown in blue. The left panel
shows a comparison of the resistances as a function of number of amino acids
traversed as calculated using Eq. (7a), with L = 9.5 nm, rn = 2.0 nm, and rp as
in Fig. 4. The right panel shows the peak frequencies as a function of number
of amino acids traversed calculated as in Fig. 4(c) for each of the synuclein
variants.

Fig. 4(c) due to the lack of surface charge density in the cen-
tral region of human αSyn. The protein double layer specific
differential capacitance was calculated by numerically solv-
ing Eq. (16) and evaluating the solution at the surface of the
protein, then using Eq. (26) while assuming that the amino
acid charge was distributed across its surface area. Amino
acid surface areas were taken from Samanta et al.36 It was
also assumed that the specific differential capacitance from
each amino acid is additive. Deviations from this assumption
may arise from mixing of the solution near the boundary of
each amino acid. This value of the specific differential capac-
itance was used to calculate the characteristic time constant
of the system (Eq. (7b)) and converted to the peak frequency
(Eq. (10)). The time constant of the system with the protein in
the nanopore (Eq. (7b)) is also a function of the radius of the
protein. The radii were calculated by assuming a cylindrical
volume with the average length of each amino acid. Then the
average value of the radii of the amino acids in the nanopore at
a given time was used. Figure 4(d) shows the predicted depen-
dence of the local ζ -potential of the protein segment inside the
nanopore on translocation position calculated by numerically
solving Eq. (16) and evaluating the results at the slip plane.
Notice the linearized zeta potential, Eq. (21), is linearly pro-
portional to the surface charge density. Thus, using Eq. (21)
would lead only to a scaling of the surface charge density.

Figure 5 illustrates changes predicted in EIS for three
closely related proteins: human αSyn, mouse αSyn, and hu-
man βSyn.22 There are seven point mutations between hu-
man αSyn and mouse αSyn: A53T, S87N, L100M, N103G,
A107Y, D121G, and N122S. Most of the differences appear
in the C-terminal region, which should thread first into the
nanopore, inducing changes between 0 and 20 in the nanopore
translocation coordinate. These relatively small sequence dif-
ferences show up in Fig. 5(a) as ∼5% changes in resistance
and in Fig. 5(b) as ∼5% changes in peak frequency. Human
βSyn has many deletions and only a 67% sequence homology
with αSyn had showed substantially larger changes in resis-
tance and peak frequency, though the differences are again
concentrated in the C-terminal region, consistent with the
sequence.

III. CONCLUSION

A model that was successfully used to model the influ-
ence of nanochannel shape and surface charge properties on
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impedance spectra was extended to include the influence of an
unfolded protein also being present. The extended model pre-
dicts the impedance of a protein traversing a nanopore, where
the protein has been simplified to a tube of varying diame-
ter and surface charge. The model provided physically correct
limiting behavior; in the absence of the protein, the model re-
duces to the original VTW impedance model. Exploration of
the theory suggested that EIS may be used to distinguish the
size and surface charge on the protein that is present in the
nanopore during translocation. The model is able to distin-
guish one charged region from another on a protein or similar
structure through the effect on the peak frequency in the neg-
ative imaginary impedance. The model shows that the surface
area of the thin membrane containing the nanochannel con-
tributes a capacitance that reduces the resolution of the pro-
posed EIS experiments. The VTW geometric model formal-
ism provides a design principle for designing nanochannel de-
vices for protein identification. Illustrative calculations show
how even fairly closely related proteins may be distinguish-
able using EIS.

ACKNOWLEDGMENTS

This project was supported in part by the National
Institute of General Medical Sciences under Award No.
R01GM071684. The authors thank the National Science
Foundation for partial support of this work through a NIRT
Grant No. 0609000. The content is solely the responsibility
of the authors and does not necessarily represent the offi-
cial views of the National Institute of General Medical Sci-
ences, the National Institutes of Health, or the National Sci-
ence Foundation.

NOMENCLATURE

Z Impedance [�]
R Resistance [�]
C Capacitance [F]
Z′ Differential impedance [�/m]
R′ Differential resistance [�/m]
C′ Differential capacitance [F/m]
ω Angular frequency [rad/s]
i

√−1 [...]
r Radius [m]
C̃n Nanopore double-layer specific differential capacitance [F/m2]
C̃p Protein double-layer specific differential capacitance [F/m2]
κn Nanopore conductivity [S/m]
L Nanopore length [m]
Zcyl Cylindrical impedance model [�]
Rcyl Resistance of a cylinder [�]
rn Nanopore radius [m]
rp Protein radius [m]
rs Substrate radius [m]
τ cyl Time constant for constant radius nanopore [s]
Zcyl+p Cylindrical plus protein impedance model [�]
Rcyl+p Resistance of a cylinder plus protein [�]
Ccyl+p Nanopore and protein double layer capacitance [F]
τ cyl+p Time constant for constant radius nanopore plus protein [s]
Cs Substrate capacitance [F]
As Substrate area [m2]

Zs Substrate impedance [�]
Zsys System impedance [�]
ε0 Permittivity of free space [F/m]
εs Substrate dielectric constant [...]
� Potential [J/C]
q Elementary charge [C]
kB Boltzmann constant [J/K]
T Temperature [K]
ni Species density in lamina [1/m3]
n0

i Bulk species density [1/m3]
z Valency [...]
λD Debye length [m]
K Modified Bessel function of the second kind [...]
σ Surface charge density [C/m2]
�0 Surface potential [J/C]
ζ ζ -Potential [J/C]
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