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Developing and explaining the Variable Topology Model

ü Developing the differential equation

To begin we use a network of resistors and capacitors to model a nanopore or nanocapillary.

Next transform the circuit elements into discrete elements.

Let

dR

dx
 R£ 

1

p r2HxL kc

And

d

dx
£  2 p rHxL

è
c

Where 
è
c is the capacitance per unit area.

Next, let each element in the network be a discrete element and transform the transmission line into a differential equation.
Consider adding an infinitesimal amount of impedance DZ to the total impedance that is Z + DZ.  Let this be one side of the
differential equation.  On the other side also add Z to DZ, however, partition DZ into resistive and capacitive elements and add
the capacitive element in parallel to the total impedance

Z + DZ  Dx R£ +
1

1
Z
+ Dx Âw£

 Dx R£ +
Z

Z Dx Âw£ + 1

Next expand the right side of the differential equation into a Taylor series in terms of Dx.

ZHxL + DZ ZHxL - ‰ Dxw ZHxL2 ¢HxL - Dx2 w2 ZHxL3 ¢HxL2 + OIDx3M

ZHxL + DZ ZHxL - ‰ Dxw ZHxL2 ¢HxL + OIDx2M

Z + DZ  Dx R£ + Z I1 - Z DxÂw£ + HZ DxÂw£L
2 + …M

Subtract off the total impedance from both sides

DZ  Dx R£ + Z I-Z DxÂw£ + HZ DxÂw£L
2 - …M

Dividing by Dx and taking the limit that Dx going to zero we have
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Dividing by Dx and taking the limit that Dx going to zero we have

Z£  R£ - Z2 Âw£

The higher ordered terms in the differential equation will have at least one Dx, thus these terms are zero when we take the
limit as Dx goes to zero.

Rearranging

(S 1)Z£ + Z2 Âw£ - R£  0

Note that Z, , and R are functions of x where x is the coordinate along the length of the nanopore.  Notice this is a first order
differential equation.

We use a zero impedance boundary condition, that is, a nanopore of zero length will have zero impedance:  Z(0) = 0 along
with the above definitions of ' and R'.

ü Constant Radius

For r(x)=r1, equation (S 1) gives a solution, Z, as a function of x.  Where again, x is the coordinate along the length of the
nanopore.  For a nanopore of length L, one would think to simply set x equal to L.  However, this will produce an asymmetric
solution.  For the general case, to symmetrize this function one solves equation (S 1) with r(x) from 0 to L/2.  Then adds to
this the mirror image of r(x), shifted back to the origin.  The linear example of this will be demonstrated below.  This, how-
ever, is simple for a constant radius function.  Since, the mirror of r1 shifted back to the origin, is a again, r1.  For a constant
radius function solve equation (S 1) with r(x) = r1, then let x = L/2, half of the nanopore.  Then multiply the total impedance
by 2, this is equivalent to solving the differential equation twice, with r(x) = r1 and r(x) = r1, then adding the solutions.  The
solution below is for a constant radius cylinder. 

ZrHxL=r1HwL

L tanh L Â wCc
è

2 r1 kc

Ip r12 kcM L Â wCc
è

2 r1 kc

This can be converted into lifetimes

(S 2)ZrHxL=r1HwL
Zcyl tanhJ Â tcyl w ê4 N

Â tcyl w ê4

Where

Rcyl 
L

p r12 kc

And

tcyl 
2 L2 Cc

è

r1 kc

Lastly, lets look at the limits of the function.  For the constant radius cylindrical model, in either the DC limit (i.e. w=0) or
that of no surface charge density the model predicts that the nanopore will act as a pure electrolytic resistor.

Limit
wØ0

Zr HxL=r1HwL Zr HxL=r1HwL = Limit
Cc
è
Ø0


L

p r12 kc

In the limit of high frequency, the impedance of a capacitor is zero, and the current path will follow that path of least resis-
tance, that of the capacitor, and thus give and overall impedance of zero
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In the limit of high frequency, the impedance of a capacitor is zero, and the current path will follow that path of least resis-
tance, that of the capacitor, and thus give and overall impedance of zero

Limit
wØ¶

ZrHxL=r1HwL 0

ü Lozenge

Next we solve equation (S 1) for a linearly varying r(x).  To begin with we solve half of the hour glass from x=0 to x=L/2,
with r(x) being

(S 3)r HxL 2 x Hr1 - r0L êL + r0

To symmetrize the impedance element solution, we interchange the capillary radii in equation (S 3):

(S 4)rHL ê2 - xL r0 - 2 x -
L

2
Hr1 - r0L êL

The solution of Equation (S 1) with Equation (S 3), integrating from x=0 to x=L/2 is

(S 5)ZrHxLHwL
t0 Rloz HI1Hx1L K1Hx0L - I1Hx0L K1Hx1LL

x1 Ht1 - t0L HI2Hx1L K1Hx0L + I1Hx0L K2Hx1LL
.

The solution of equation (S 1) with equation (S 4) integrating from x = 0 to L/2, 

(S 6)ZrHLê2-xLHwL
t1 Rloz HI1Hx1L K1Hx0L - I1Hx0L K1Hx1LL

Ht1 - t0L Hx0 I2Hx0L K1Hx1L + x0 I1Hx1L K2Hx0LL
,

is added to equation (S 5) to give the symmetric lozenge impedance element:

(S 7)

ZlozHwL
HRloz HI1Hx1L K1Hx0L - I1Hx0L K1Hx1LLL

t1 - t0

t0

x1 HI2Hx1L K1Hx0L + I1Hx0L K2Hx1LL
+

t1

x0 HI2Hx0L K1Hx1L + I1Hx1L K2Hx0LL

where

(S 8)x0  4 Â t0 w

(S 9)x1  4 Â t1 w

(S 10)Rloz 
L

kc p r0 r1

(S 11)t0 
L2 r0 Cc

è

2 Hr1 - r0L2 kc

(S 12)t1 
L2 r1 Cc

è

2 Hr1 - r0L2 kc

Limit
wØ¶

ZlozHwL Limit
Cc
è
Ø0

ZlozHwL
L

kc p r1 r0

where

L

kc p r1 r0
 2 ‡

0

L

2 1

kc p r2HxL
„ x

Each half of the nanopore will give the same impedance
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Each half of the nanopore will give the same impedance

And lastly, as with the constant radius nanopore

Limit
wØ¶

ZlozHwL  0

Limit
wØ¶

ArgHZlozHwLL  -p ê4

Limit
wØ0

ArgHZlozHwLL  0

ü Cone

Equation (S 7) can be converted to a truncated cone geometry by substituting 2L for L in equations (S10|S12) and dividing
equation (S 12) by 2. This produces a ZVTW function that properly describes the impedance of a cone.  That is, whether an r(x)
is evaluated or the mirror image of r(x), translated back to the origin, the model will produce the same impedance, as would
an experiment.

ü Quadratic Radius Dependence 

Next we solve equation (S 1) for a quadratically varying r(x)

(S 13)r HxL r1 +
4 r0 x2

L2

To symmetrize the impedance element solution, we interchange the capillary radii in equation (S 13):

(S 14)rHL ê2 - xL r0 +
4 r1 x2

L2

The solution of Equation (S 1) with Equation (S 13) and integrating from x=0 to x=L/2 is

(S 15)Zquadê2HwLã
H3 - 2 gL2 H2 g + 3L k r3 IPg+

2 H0L Ir Qg-
2 HÂ rL + Â Qg+

2 HÂ rLM - Qg+
2 H0L Ir Pg-

2 HÂ rL + Â Pg+
2 HÂ rLMM

4 p L3 Ir2 + 1M2 w2 
è 2

IPg+
2 H0L Qg-

2 HÂ rL - Qg+
2 H0L Pg-

2 HÂ rLM

where Pn
mHxL is the associated Legendre polynomial and Qn

mHxL associated Legendre function of the second kind. 

(S 16)r ã r0 êr1

(S 17)g± ã
9

4
+

Â L2 w
è

2 r0 kc
±

1

2

(S 18)g =
g+ + g-

2
Symmetrization is accomplished by the same process as in the linear case: r0 and r1are interchanged in equation (S 15) and the
result added to equation (S 15).
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Additional Fitting and Calibration Results

ü Active Set (AS) Fits

Below are the active set fits to the experimental data.
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ü Global model of the Instrument Response

ü Fits to Local Parameters background component of the data

„ Background Resistance
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Estimate Standard Error t Statistic P-Value

Rcell 408.9 2.5 162.5 8.58µ10-9
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Estimate Standard Error t Statistic P-Value

Cbk 9.00 0.4 24 0.00014

Cbk 46.0 0.6 72 5.9µ10-6

„ Background Response Time
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t b
k
Hn
sL

tbkãCbk RbkãRcell Jbkëkb+Cbk kb N

Estimate Standard Error t Statistic P-Value

Cbk Rcell 3.57 0.07 48.1 0.0000197
Cbk Rcell 18.6 0.4 42.7 0.0000281

ü Direct fit of Global background functions to Background data

The background circuit element was globally modeled as a simple electrolyte solution resistor (Rbk  Rcell êkb) with a power-

law conductivity-dependent capacitance constant (bk bk kb
3ê2 + bk). The time scale of the instrument response was non-

monotonic  with  conductivity.  The  3/2  power  law  in  the  capacitance  results  in  a  combination  power  law

Jtbk  Rcell Jbk kb +
bk

kb
NN for the time response. Since the response of the electrochemical cell and electrodes is faster

than the highest frequency Fourier component measured by the EIS instrumentation, the details of the circuit response are in
the high frequency region of the spectrum that is not measured. There are likely two contributions to the instrument response
time that have different dependencies on the conductivity. The same power law functions were observed to fit the instrument
response of both the background measurement and the NCAM measurement.
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ü Instrument Response changes with and without membrane present

The addition of the NCAM to the cell did not change the resistive contribution to the instrument response, Rcell = (412±3 to
410±2 m-1), or the conductivity-dependent part of the capacitance, C1bk = (8.0 to 7.8 pF HS êmL-3ê2). With the membrane
present, the conductivity-independent contribution to the capacitance increased from, C0bk = 16pF to 58pF.

ü Calibration of bulk solution conductivity

@NaClD @Na1+xH2-xPO4D k from CRC AS Blank Resistance
100mM 10mM 1.06 376.5
50mM 10mM 0.593 667.
20 mM 10mM 0.305 1205
10mM 10mM 0.207 1728
0 mM 10mM 0.109 3023

The cell constant was determined by fitting the observed blank cell resistivity values to conductivity values interpolated from
the CRC using:

Robs 
Rcell

kcrc + k0
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kb=kcrc+ko

Estimate Standard Error t Statistic P-Value

Rcell 411.6 3.1 133 9.24µ10-7

k0 0.030 0.005 6.71 0.00674

The corrected conductivity values fit to a simple R ∝ k-1 law

Estimate Standard Error t Statistic P-Value

Rcell 411.6 1.5 267 1.18µ10-9

Calibrated bulk conductivity values:

Observed Predicted Standard Error 95% Confidence Interval

1.093 1.093 0.004 81.082, 1.104<
0.627 0.617 0.002 80.611, 0.624<
0.335 0.342 0.001 80.338, 0.345<
0.237 0.238 0.001 80.236, 0.241<
0.139 0.136 0.001 80.135, 0.138<

S 7   Supporting Information



ü Only RC Model

Here the simplest model and fit is shown.  The capillary is modeled as a resistor with the membrane as a capacitor.  As can be
seen, the fits are poor with a reduced chi squared of about 4500.  
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ü Only Cylindrical Model with a capacitance membrane.

Next, the experimental data is fit with the capillary being modeled with Equation (S 2).  This reduces the chi squared by
almost 9 times.  Below are the fits to the experimental data using Equation (S 2).  Notice, however, that this model does not
capture the degree of suppression of the peak in the Nyquist plot.
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ü Zloz Model with a capacitance membrane.

Here the experimental data is fit with the capillary being modeled with Equation 7.  This reduces the chi squared by over 8
times from Equation 2.  Below are the fits to the experimental data using Equation 7 instead of Equation 2.  Notice now these
fits capture all the main features of the data.
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ü Local Fit Parameters for Instrument Response and Membrane Surface

ü Global Fits

The global model fits were of nearly the same quality as the local fits. The data and fit lines appear below. 

ÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

‡‡‡‡
‡‡‡
‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡

ÏÏÏÏ
ÏÏ
ÏÏ
ÏÏ
ÏÏÏÏÏÏ

Ï
Ï
ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ

ÚÚÚÚÚ
ÚÚ
ÚÚ
ÚÚ
ÚÚÚÚÚ

Ú
Ú
Ú
Ú
Ú
ÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚ

ÙÙÙÙÙÙ
ÙÙ
Ù
Ù
Ù
Ù
ÙÙ

ÙÙ
Ù
Ù
Ù
Ù
Ù
Ù
Ù
Ù
ÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙ

0 2000 4000 6000 8000
0

500

1000

1500

ReHZLHWL

-
Im

HZ
LH
W
L

¶

w w

Ø
0

ü Experimental Setup

Below is a schematic of the experiment.
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