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Determining nanocapillary geometry from electrochemical impedance
spectroscopy using a variable topology network circuit model.

Michael J. Vitarelli Jr., Shaurya Prakash, David S. Talaga

Developing and explaining the Variable Topology Model

= Developing the differential equation

To begin we use a network of resistors and capacitors to model a nanopore or nanocapillary.
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Next transform the circuit elements into discrete elements.

Let
dR 1
 _R=_
dx 7 r2(X) K,
And
dCc

— =C' =2nrx)C.
dx

Where C. is the capacitance per unit area.

Next, let each element in the network be a discrete element and transform the transmission line into a differential equation.
Consider adding an infinitesimal amount of impedance AZ to the total impedance that is Z + AZ. Let this be one side of the
differential equation. On the other side also add Z to AZ, however, partition AZ into resistive and capacitive elements and add
the capacitive element in parallel to the total impedance

1 Z
Z+AZ=AxR + ———  =AxR'+ —
L AxiwC Z AxiwC’ + 1
Z

Next expand the right side of the differential equation into a Taylor series in terms of Ax.
Z(x) + AZ=Z(x) — i Ax 0 Z(x)? C'(x) - AX 0? Z(x)* C' (%) + O(AX°)
Z(x) + AZ=Z(x) — i Ax 0 Z(x)* C'(x) + O(AX’)

Z+AZ=AxR +Z (1 - ZAxiwC' + (Z AxiwC') + ...)

Subtract off the total impedance from both sides

AZ =AXR' +Z(~Z AxiwC’ + (Z AxiwC')’ - ...)
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Dividing by Ax and taking the limit that Ax going to zero we have

Z' =R -Z%iwC’
The higher ordered terms in the differential equation will have at least one Ax, thus these terms are zero when we take the
limit as Ax goes to zero.
Rearranging

Z +Z%iwC’ -R =0 SDH
Note that Z, C, and R are functions of x where x is the coordinate along the length of the nanopore. Notice this is a first order
differential equation.

We use a zero impedance boundary condition, that is, a nanopore of zero length will have zero impedance: Z(0) = 0 along
with the above definitions of C' and R'.

Constant Radius

For r(x)=r, equation (S 1) gives a solution, Z, as a function of x. Where again, x is the coordinate along the length of the
nanopore. For a nanopore of length L, one would think to simply set x equal to L. However, this will produce an asymmetric
solution. For the general case, to symmetrize this function one solves equation (S 1) with r(x) from 0 to L/2. Then adds to
this the mirror image of r(x), shifted back to the origin. The linear example of this will be demonstrated below. This, how-
ever, is simple for a constant radius function. Since, the mirror of r; shifted back to the origin, is a again, r;. For a constant
radius function solve equation (S 1) with r(x) = ry, then let x = L/2, half of the nanopore. Then multiply the total impedance
by 2, this is equivalent to solving the differential equation twice, with r(x) = r; and r(x) = r;, then adding the solutions. The
solution below is for a constant radius cylinder.

Ltanh[L [pacass
271 Ke
B iwéc
(n i Kc) [L \ [ T ]

This can be converted into lifetimes

Zegtanh(y ity /4 )

Zr(x):r] (w) = (S2)

ViTgw/4

Zr(x):r] (w) =

Where
L
Rcyl =
nri K
And
21%C,
Teyl =
I Ke

Lastly, lets look at the limits of the function. For the constant radius cylindrical model, in either the DC limit (i.e. w=0) or
that of no surface charge density the model predicts that the nanopore will act as a pure electrolytic resistor.

L

Limit Z, (y=r, (0) = Zy yr, (@) = Limit =
w-0 C:(—>0 ﬂ'rl K
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In the limit of high frequency, the impedance of a capacitor is zero, and the current path will follow that path of least resis-

tance, that of the capacitor, and thus give and overall impedance of zero

Limit Zr(x):r] (w)=0

w—00

= Lozenge

Next we solve equation (S 1) for a linearly varying r(x). To begin with we solve half of the hour glass from x=0 to x=L/2,

with r(x) being

r(x)=2x@r1—ro)/L+ry

To symmetrize the impedance element solution, we interchange the capillary radii in equation (S 3):

L
r(L/Z—x):rO—Z[x— E)(rl —ro)/L

The solution of Equation (S 1) with Equation (S 3), integrating from x=0 to x=L/2 is

7o Rioz (11(€1) K1 (&) — 11(&0) K1(€1))
& (11 = 10) (L&) Ky (&) + 1 (&) K1)

Zr(x)(w) =

The solution of equation (S 1) with equation (S 4) integrating from x =0 to L/2,

71 Rioz (11(§1) K1(60) — 11(60) K1(£1))
(11 = 70) (€0 a(&0) K1 (€1) + &0 11 (€1) Ka(é0))

Zr1pp—n(W) =

is added to equation (S 5) to give the symmetric lozenge impedance element:

Z]oz(w) =
(Rioz (I1(€1) Ki1(&o) — 11(&0) K1(€1))) To

T1

+
T —To &1 (L&) K1 (o) + 11(6o) K2(E1) &0 (12(6o) K1 (1) + 11(61) K2(&o))

where

60:\[41'7'00)
& =\/4i‘r]w

L
Ry, =
KeTTrory
L2 ro éc
To = —2
2(ry —10)” ke
L2 r éc
T = 72
2(r1 —10)" ke
L
Limit Zj,(w) = Limit Zjy,(w) =
woeo C.-0 KeTtry 1o

where

L

L S|
7:2f  x
KT Ty Fo 0 Kk 2 (x)
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Each half of the nanopore will give the same impedance
And lastly, as with the constant radius nanopore

Limit Zio,(w) =0

W—00

Limit Arg(Zy,,(w)) = —n/4

W—00

Limit Arg(Zj,(w)) =0

w—-0

= Cone

Equation (S 7) can be converted to a truncated cone geometry by substituting 2L for L in equations (S10-S12) and dividing
equation (S 12) by 2. This produces a Zytw function that properly describes the impedance of a cone. That is, whether an r(x)

is evaluated or the mirror image of r(x), translated back to the origin, the model will produce the same impedance, as would

an experiment.

= Quadratic Radius Dependence

Next we solve equation (S 1) for a quadratically varying r(x)

4/‘0)(2

r(x)y=r; +

To symmetrize the impedance element solution, we interchange the capillary radii in equation (S 13):

41"1X2

r(L/2-x)=ry+

The solution of Equation (S 1) with Equation (S 13) and integrating from x=0 to x=L/2 is

B =292y +3)kp* (PO (00} (ip) +i 03 (i p) ~ 03.(0) (0 P} (i p) +i P}, (i p)))

Faag2() = 30,2 2 252 2 2 2 s
AnL3(p*+1) W?C (P2(0) Q% (ip)— Q2 (0) P2 (ip))

where P)'(x) is the associated Legendre polynomial and Q7'(x) associated Legendre function of the second kind.

(S13)

(S 14)

(S 15)

(S 16)

(S 17)

(S 18)

Symmetrization is accomplished by the same process as in the linear case: ry and rjare interchanged in equation (S 15) and the

result added to equation (S 15).
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Additional Fitting and Calibration Results

= Active Set (AS) Fits

Below are the active set fits to the experimental data.
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= Global model of the Instrument Response

= Fits to Local Parameters background component of the data

o Background Resistance
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Estimate Standard Error t Statistic P-Value
Cobk | 9.00 0.4 24 0.00014
Cik  46.0 0.6 72 5.9x10°°

o Background Response Time

s T T T T

Ty (0S)
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Kp (S/m)

Estimate Standard Error t Statistic P-Value
Cobk Reen  3.57 0.07 48.1 0.0000197
Cik Reey  18.6 0.4 42.7 0.0000281

= Direct fit of Global background functions to Background data

The background circuit element was globally modeled as a simple electrolyte solution resistor (Ryx = Reen/kp) With a power-
law conductivity-dependent capacitance constant (Cpx = C1pk Kz/ 2y Covk)- The time scale of the instrument response was non-
monotonic with conductivity. The 3/2 power law in the capacitance results in a combination power law

Con . . . .
(Tbk = Reell (C kA Kp T %)) for the time response. Since the response of the electrochemical cell and electrodes is faster
b

than the highest frequency Fourier component measured by the EIS instrumentation, the details of the circuit response are in
the high frequency region of the spectrum that is not measured. There are likely two contributions to the instrument response
time that have different dependencies on the conductivity. The same power law functions were observed to fit the instrument
response of both the background measurement and the NCAM measurement.
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= Instrument Response changes with and without membrane present

The addition of the NCAM to the cell did not change the resistive contribution to the instrument response, Reell = (41243 to

410+2 m™"), or the conductivity-dependent part of the capacitance, Cibk = (8.0 to 7.8 pF (S/m)~*/?). With the membrane
present, the conductivity-independent contribution to the capacitance increased from, Cobk = 16pF to S8pF.

= Calibration of bulk solution conductivity

[NaCl] [Nay,,H,_,PO,] «from CRC AS Blank Resistance

100mM 10 mM 1.06 376.5
50mM 10mM 0.593 667.

20mM 10 mM 0.305 1205
10mM 10mM 0.207 1728
0 mM 10 mM 0.109 3023

The cell constant was determined by fitting the observed blank cell resistivity values to conductivity values interpolated from
the CRC using:

Rcell
Robs =
Kere + Ko
1of
0.8}
E 06l
2
< 04l
02}
0.0k ‘ ‘ ‘ ‘ .
0.0 0.2 0.4 0.6 0.8 1.0
Kere [S/m]
Estimate Standard Error t Statistic P-Value
Ren 4116 3.1 133 9.24x 1077
Ko 0.030 0.005 6.71 0.00674

The corrected conductivity values fit to a simple R o ™! law

Estimate Standard Error t Statistic P-Value

Reenl 4116 1.5 267 1.18x107°

Calibrated bulk conductivity values:

Observed Predicted Standard Error 95% Confidence Interval

1.093 1.093 0.004 {1.082, 1.104}
0.627 0.617 0.002 {0.611, 0.624}
0.335 0.342 0.001 {0.338, 0.345}
0.237 0.238 0.001 {0.236, 0.241}
0.139 0.136 0.001 {0.135,0.138}
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= Only RC Model

Here the simplest model and fit is shown. The capillary is modeled as a resistor with the membrane as a capacitor. As can be
seen, the fits are poor with a reduced chi squared of about 4500.
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= Only Cylindrical Model with a capacitance membrane.

Next, the experimental data is fit with the capillary being modeled with Equation (S 2). This reduces the chi squared by
almost 9 times. Below are the fits to the experimental data using Equation (S 2). Notice, however, that this model does not
capture the degree of suppression of the peak in the Nyquist plot.
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= Z,, Model with a capacitance membrane.

Here the experimental data is fit with the capillary being modeled with Equation 7. This reduces the chi squared by over 8

times from Equation 2. Below are the fits to the experimental data using Equation 7 instead of Equation 2. Notice now these
fits capture all the main features of the data.
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= Local Fit Parameters for Instrument Response and Membrane Surface

Table 1: Local fit parameters for instrument and membrane surface response.
Note that the large error values for Cp; reflect the fact that the instrument
response is faster than the highest frequency component measured in the EIS

experiment.
NaCl Buffer Rp Cmem Rms Cms Rbk Cbk
mM  mM S/m pF Q mF Q pF
100 10 1.093£0.004 139417 26+1 0.068£0.008 3607 62266
50 10 0.617£0.002 139£17 45+2 0.040+0.004 65410 32+£179
20 10 0.34240.001 139£17 6843 0.0294+0.003 1158+£13 194133
10 10 0.2384+0.001 139£17 7943 0.02840.003 171614 14+96
0 10 0.136+0.001 139£17 764+4 0.038+0.005 3023+£12 11+48
m Global Fits

The global model fits were of nearly the same quality as the local fits. The data and fit lines appear below.
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= Experimental Setup

Below is a schematic of the experiment.
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