We use time-dependent fluorescence Stokes shift (TDFSS) information to study the fluctuation rates of the lipocalin, beta-lactoglobulin A in the vicinity of an encapsulated coumarin 153 molecule. The system has three unique dielectric environments in which the fluorophore binds. We develop a method to decompose the static and dynamic contributions to the spectral heterogeneity. This method is applied to temperature-dependent steady-state fluorescence spectra providing us with site-specific information about thermodynamic transitions in beta-lactoglobulin. We confirm previously reported transitions and discuss the presence of an unreported transition of the central calyx at 18 degrees C. Our method also resolves the contributions to the TDFSS from the coumarin 153 centrally located in the calyx of beta-lactoglobulin despite overlapping signals from solvent exposed dyes. Our experiments show dynamics ranging from 3-1200 ps. The analysis shows a decrease in the encapsulated dye's heterogeneity during the relaxation, which is taken as evidence of the breakdown of linear response.